Programming the
EDSAC

Andrew Herbert
The National Museum of Computing
16t November 2022

T H E
NATIONAL

MUSEUM

OF COMPUTING

EDSAC FIRSTS

* The world’s first PRACTICAL electronic digital stored
program computer = computer of the modern kind

* The world’s first computer programming system

T LLERLEE

,’ ; l"""" u'!
[B

2 ™Y
LA AL X
” b,

SAAAARD

Ty

e Wl
o 3
WAALAA R RT
RNEY =)
“|||31|y’ " ; I "'
L E3b=33p~, I
"y '
128 *20 0
L 1)

24 =2
QLS wivnyy g
S EENROYG

- n"vuu_‘
Ty

«2wn. The Preparation of Programs
for an
Electronic Digital Computer

Maurice V. Wilkes, David .J. Wheeler and Stanley Gill
Addison Wesley, 1951

With special reference to the use of the EDSAC

Why a Programming System?

The methods of preparing programs for the EDSAC were developed with a view to
reducing to a minimum the amount of labour required, and hence of making it
feasible to use the machine for problems which require only a few hours of
computing time as well as for those which require many hours. This necessitated
the establishment of a library of subroutines and the development of systematic
methods for constructing programs with their aid.

[WWG 1951]

Note emphasis on programmer productivity rather than on “optimal
programming”.

To the potential user of an automatic digital calculating machine, the successful design
and construction of the machine itself is only a first step, though certainly an essential
one. In order that the machine should in practice be useful to him in the calculations
he may desire to carry out with its aid, the provision of an adequate organization for
using the machine is as important as the machine itself.

The process of building up [such] a library of subroutines, and testing its value by
practical use, appears to have proceeded further at the Mathematical Laboratory of
the University of Cambridge than elsewhere.

... itis a practical and useful system has been tested by experience; it divests
programming of the appearance of being something of a magic art, closed except to a
few specialists, and makes it an activity simple enough to be undertaken by the
potential user who has not the opportunity to give his whole time to the subject.

The subject is one which is still developing. . .

w 0 N o

Store: ultrasonic delay line holding 1024 X 17 binary digit
numbers stored in true two’s complement form, so most
significant digit corresponds to the sign of the number.

Numbers are held in 1024 numbered “storage locations”
numbered serially from 0 to 1023 for reference. Each such
reference number is often called the “address” of the
associated storage location.

Hence 17 bit numbers are often called “short numbers”

Two consecutive storage locations, starting from an even
numbered address can be combined to make a 35 binary digit
“long number”.

Arithmetic unit: add, complement, collate, shift. Combine to
enable subtract, multiply, round, but no divide.

Accumulator register of 71 bits.
Multiplier register of 35 bits.
Input: 5 hole paper tape read by photoelectric reader.

Output: teleprinter.

. Control: an “order” passes from store into the control unit

(“Stage I”), then it is executed {Stage 11”). The machine then,
generally, then automatically takes the next order from the
location following that of the order just executed.

EDSAC Block Diagram

Store
T F - =T | Control
T | L1
gk o |
Arithmetic| | |
t ==t U 2
|
t ~— Accumulator| | |
regisser | :
| |
> Output |~ E
|
<~ Input e

Order Code:

OAForOAD

O: Function code — operation to be carried out
A: Address of location to be used as operand
F or D: Short or Long number

An
Sn
Hn
Vn

N n

Tn
Un

Cn
RD
L D

Add C(n) to Acc
Subtract C(n) from Acc
Copy C(n) to Multiplier

Multiply C(n) by C(Mult) and add
product to Acc

Multiply C(n) by C(Mult) and subtract
product from Acc

Transfer C(Acc) to location n and clear Acc

Transfer C(Acc) to location n but do not
clear Acc

Collate C(n) with C(Mult) and add to Acc
Right shift Acc one place (x 27)
left shift Acc one place (X 2)

L2P2F
R2P2F
EnF

GnF

InF

OnkF

N < X m

Multiply by 2P (2 < p <=12)
Multiply by 2P (2 < p <=12)

If C(Acc) >= 0 execute next order from
location n; otherwise proceed serially

If C(Acc) < 0 execute next order from
location n; otherwise proceed serially

Read next 5 bit code from input to location
n from tape reader

Print character set up on teleprinter, then
set up m.s. 5 bits of location n as next
character

Read back last set character
Ineffective — no-op

Round Acc to 34 digits (i.e., add 2-3°).
Halt and ring the bell

Fixed Point Arithmetic

Binary point assumed between top Compute x+y+xy; x in location 6, y in
two most significant bits, so location 7.

numbers are -1 <=x< 1. (0) T8F

Thus A order computes x+y-2 if

x+y>=1, and x+y+2 if x+y<-1. (1) A6F

When two long numbers are (2) ATF

multiplied together the resulting69 (3) H6F

digits are available in the (4) V7F

Accumulator.
(5) ZOF

(6) +0.5 01000000000000000
(7) +0.25 00100000000000000
(8) (spare)

0.5+ 0.25 + (0.5 * 0.25) = 0.875

Demol

Integer Arithmetic

Can treat accumulator as holding integers for A, ~ Compute x+y+xy, xin location 8, y in location 9.
S,C, L R, E,Gbutfor N, Vmultiplier is always

treated as a fraction. (0) T10F
i.e., integers are stored as value * 2-%so need (1) H8F
to multiply by 21¢ after multiplication. (2) VOF
(3) L512 F ; multiply by 216 = 211%25
(4) LSF
(5) A8F ;note addition after
(6) A9F ; multiplication
(7) ZOF
(8) +10 00000000000001010

10+5+ (10 *5) =65
() (9) +5 00000000000000101

(10) (spare)

Demo?2

Loops

(0) T14F
] to brint digit 7 five t (1) O10F ; Type figure shift
oop to print digit 7 five times 2) SOF - Set count = -5
C(11) is “F it (3) A10F ; Increment count
12, ° ,,;fure > (4) 012F ;Type ‘7
!S (5) G3F ; loop if count <0
C(13) is RET
_ (6) O13F ;Type RET
Loops while Acc< 0 (-5, -4, -3, -2, -1) , ,
(7) O11F ; Type figure shift
. . (8) ZOF ; Halt
Note: need to set figure vs. letter shift (9) o5
Note: output delayed one character (10) 1
Not vG<0and E <= 0. but no “ 5" ord (11) 01011000000000000
: < <=0,
ore: ony B = Fan HENO TEQUAISTOTEET T 12) 00111000000000000
(13) 11000000000000000
(14) (spare)

Demo3

Indexing

Initially EDSAC had no index register. (0) T13F ; Clear acc
Invented for Manchester Mark 1 in 1949. (1) A14F ; Add sum
Later adopted by EDSAC. (2) A15F ; Add vector[0] **
(3) T14F ; Store in sum
So t}? do an indexedlfcalcuollaftion, e.%l., suhm a vector, (4) A2F ; C(2)
we have to write self-modifying code that .
manipulates program in sto}'le.g (5) A12F ; €(2)+2 (inc. address)
(6) U2F ; Modify (2) **
To do arithmetic on orders we need to understand (7) S20F ; Check for end
binary format of orders: (8) GOF : Loop if not at end
* 5m.s. bits: order code _
* 1hbit: spare (later add B register to address) (9) T13F ; Clear acc
* 10 bits: address in range 0-1023 (10) Al4F ; Result
* Ls. bit: 0=F1=D (11) 70F Halt
Demo adds contents of vector starting at location (12) +2 ; address stride
15 (13) +0 ; workspace
(14) +0 ; sum
We have to add +2 to location 2 each time around (15-19) +1+2 +3 +4 +5 ; vector

the loop to fetch the next element of table ,
(20) A20F ; sentinel (Demo4)

Emulators etc

* Demos thus far run using EDSAC team test program generator:
* Assembler written with “modern” facilities

* Emulator written in C with tracing facilities
e adapted from original by Lee Wittenberg

* On EDSAC we use a “Signal Sequence Injector” box to set up program in main
store from location O onwards

e Visit GitHub/andrewjherbert to find these:

e edsacasm - https://github.com/andrewjherbert/edsacasm - Python
* edsac - https://github.com/andrewjherbert/EDSAC-Emulator - C

e But this is not how EDSAC users wrote code...

https://github.com/andrewjherbert/edsacasm
https://github.com/andrewjherbert/EDSAC-Emulator

e

UNIVERSITY MATH

i{EMATICAL LABO

RATORY, CAMBRIDGE

EDSAC PROGRAMME SHEET

Catuudater fo o A= L

'2‘8’3 b -64-\33

g, vk "\ft 7NSQ .

P F &
i K i
P o F %= 4Fx 204F Vi

- Kl Bk

F J 1:%&

T 204 K |

b £ | AFx204% =;(x;/

&1 d N0

/267 :D a's Mfy)‘ff
355 K oudf velua of D

\

Q

A

T

A.

q

A-

T

o

/)
8 ¢ 2 s g
9 |'W F)(dhv% ;\,-11"",,..&'& 5 [

P {

T‘

A_

H.

T

T

H.

DATE

|
| Notes

V :204,7 D > o ¥ 9D
K 4095 D |5 *-*(1:n")

| £ Fi) k= wdDx32768
e (FD> A wloe.
FaR e

G S
b2 | ‘
e L A g%
A 242 £)
‘T 126K

7 e F
"/E 179 Fr.
T 79 K =
‘A 126 D RN
Te e |

P 10812 F

P zze00 F

Cdl7aa. STy
BProct o f |0 R
17314 P8 (T D
\F 3¢ DS E e B
E 2455 e

| 7248 ¥ L ad
865 BV G 27/ K Do

V288 DTS Do X
s D o

hasl Fale ok

(e Ciust

- e
. .h)'
P o

-

o
25

T I K

Pio24 F

T4 K

7 ci 4D

TITLE WRwTEN
o TATE

CTiuad

E1R1D

E4u K

{

-
-
E_]
-
i

-

i

CON KO

AN

_..#03350¢ ;
: 037588 +O187C4 ,' o
+040¢1¢ +01¢138 ‘ ~

+045875 +015864 ~ 4% (/i
L° 7+ 055687 1099250 ﬂ-"» o
+06600C +023656
+0S1337 +027¢<46
+121824 +035461 .S; e
+268¢04 +047536 N%

+031130 +01€063 .
. +032182 +018868 ° !
. +033528 +018743 |
+035304 +018723 ' :
+037726 +018863 |
+oag163 +o1£25%
_ +046278 +02003¢
|-05351. +054331 +02147¢
+067 €07 +02400¢
+0C27¢C +028414
+143687 +035000 . ‘
*27.0334 '+ 0INReG, o W N

+031106 +01<048
*03217¢ +018867
+033558 +01875¢
+03538O +O18763

T TR et

+05465¢ +021724

+068860 +024346 .

+094165 4028832 :

+145354 +®36339 - " i

_*271576.+028008. . " .
5’% NS e, T s m.&,;«";:’.'_"‘—hﬂ‘ 2
- “ii%g CLd e’ - i

Initial Orders

Fixed program to load source
programs from paper tape into
store

Input is alphanumeric

Combined assembler and linker to
enable user code to be linked to
predefined library routines

Unique to EDSAC

Programming tour de force by
David Wheeler

Proc. Royal Society A, 202, August 1950: D.J. Wheeler,
Programme organization and initial orders for the EDSAC.
https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0121

Initial orders concepts

* Instructions in alphanumeric form rather than binary
* Like modern assembly code

* Control codes to direct initial orders where to load and how to fix up
addresses, start execution

* To enable linking in subroutines in arbitrary order
* Addressing relative to a previously set parameter (control code)
* But no error handling!

Warwick Simulator

Written by Martin Campbell-Kelly
Available for Windows and MacOS
GUI replicates original EDSAC operation

https://edsac.net

o= Edszac

Output From: OX0

287 NOUGHTS AND CROSSES
& 5 4 ET
3 E1 A 3 DOUGLAZS, C.13EZ

LOADING PLEAZSE WAIT. ..
EDESAC/USER FIRST (DIAL 0f1):0

DIAL MOVE:7
DIAL MOVE:&

Clear | PReset
Start | Stop

EEERTIIEEEERETTSTRRERRRRERRRRRREEEN Multiplier |
CIIIEETEEETTSTERRRERRERRERRRREEEN Multiplicand

Includes Tutorial Guide, original EDSAC subroutine library, worked

example programs

Y |

https://edsac.net/

Hello world

Start —» 0

T64AKGKandEZPFare
control combinations

0 is a “parametric address”
T 64 K- load from loc 64

G K—set O (to 64)
EZPF—-enter program at
Location O (64)

* Is erase character (32 decimal)

'_\

~J

N.B. Data input as instructions

64

Load from location 64
Set 0 parameter

Stop

Print letter shift
Print "H"

Print "I"

Stop

Letter shift

nEe

"I"

} Enter at location 00

(a) Program text

Demonstration Programs/Hello.txt

T64K
GK
ZF
05@
O6(@
o074
ZF
*F
HF
IF
EZPF

(b) Program tape

Table 2 Edsac Character Codes

Perforator Teleprinter Binary Decimal

EDSAC character codes et e e

P 0 P 0 00000 0
Q 1 Q 1 00001 1
W 2 w 2 00010 2
E 3 E 3 00011 3
R 4 R 4 00100 4
T 5 T 5 00101 5
Programs prepared on perforator v 6 v 6 00110 6
U 7 U 7 00111 7
H H | 8 | 8 01000 8
Note NO figure / number shift 5 ; o] oy]
J J 01010 10
p Figure Shift 01011 11
S S " 01100 12
. . z z + 01101 13
Output produced in Teleprinter code K K (01110 14
Erasel Letter Shift 01111 15
Blank tape? (no effect) 10000 16
F F $ 10001 17
q Carriage Retur 10010 18
H H H H H H D D ; 10011 19
Order field in instruction is the bit pattern of the 2 Space o ”
1 - H + H £ 10101 21
order character, i.e., A=11101 % _ ¥ | o 2
M M . 10111 23
D Line Feed 11000 24
L L) 11001 25
. . X X / 11010 26
Note convention for typing Greek letters when G G # 11011 27
. A A - 11100 28
using emulators 5 A) 11101 ”
C C : 11110 30
Vv \YJ = 11111 31
Notes

1 Erase is represented by an asterisk (“*) in the simulator. When this character is output, it sets the
teleprinter into letter shift.

2 Blank tape is represented by a period (“.”). This character has no effect on output.

3 The personal computer text environment has only a “newline” character. On the Edsac simulator,
the line-feed character is interpreted as a newline character, and carriage returns are thrown away.

4 The symbols g, f, D or p are typed as @, !, & and #, respectively.

Control combinations

TmK
GK

TZ
EmKPF
EZPF
PZorPK

set load point tom

set O parameter to load point
restore O parameter

enter program at location m
enter program at location 0

start of new tape block

Subroutines — the Wheeler jump

A m F to pick up where calling

from (m+1) m A m F pick up self
m+1 G n F jump to subroutine master routine
A m F iS 11000... SO negative m+2 . control returns here
C(3) = U 2 F n A 3 F form return link
Calculate E m+2 F and store as ntl | T p F | plant retum link
final instruction - subroutine
P (.) return link planted here -

Return to caller

Cubes

Nichomacus’ formula for cubes:

13=1

23=3+5
33=7+9+11
43=13+15+17 + 19
etc

Use library routine P6 to print integers

.. represents blank tape

Enter-

G2 I 3 = O O o o3 G2

| G2 x> I =3 X << = X 3 T 3 = I +3

o o ‘o Yo ‘o o

=

K| Set O-parameter
Pl Stop Routine Location of lumber of storage
B0 | Figue shift first order locations occupied
00| 7 Vew Line
i P (print) %6)
B | ktolr Naster B -
F
68 | 1 Print 0P using B
o Tableof outes
B | lerotok
U space P R
08 [ntlton
U 1518
8| 11 to count
i
B "
B | (mlton
B
Do rkmtok e 11
B
268 | 1 Increnent count
B _ Haster
B0 | Jump to 13 if comt ¢ 0
20 | Repeat main cycle
o BIDF
)|k (% <1 ditialy)
D =l initially)
)| o inially o) Make-tp ofprogam tpe
F | comt
D| =l
[P] = |
Pl fig B
Pl o 1
I t
15
26
g Nserrotie ;

¢| Prnout

[Cubes]

WK

il

£
GRASFT25EHI9EVPTADA3 T3 8
T4DU4DARGL6ETRTROSFALDRLRS
LAPT4DAIFS3GYRERSRO3 EE208
Wil

[Cubes Naster|

Gk

/Cubes.txt

F’oéa ms

i

f

Demonstration®

SIPF

0)Progam tae

Notes

Conventional “coding sheet” style for writing programs
No layout on EDSAC tape

No comments on EDSAC tape

Use of O to make code position independent
Constants written as pseudo orders

Advanced features

Code letters: Code-letter Location Value
F 41 0
g 42 Origin of current routine
D 43 1
fFHNM..V 44,45,46 ... 55 For use by programmer

Used to create position independent code and data cross references
Subroutine parameters:
Pass via fixed address (often 0)

Include in calling sequence

Run and delete open subroutines on the fly to save store...

=4
— — — — —
—a = < — > - —_— = — I — <
= —e f=— = =T r< e —e (=] L= = = =
—— — — —
— = = ==y = — — — == f——y f=— f=—
I 1
" [} [=" — <= " " " 2 — [—
= <> [=1 — = =
— — <= — — —_— e P [=%1 <= <=
=] —=- <& — - =1 = —= [—
- —r = — - — — [n=1 fa =1
1 =y — = = =
— — <= (== e o = =
- < < <> =1 =1
— [y —. b= — =
1 — — -
—— — - P —
[E—— = = =
= — =
| — — =
e —
- <>
=, A
—
—
—_—
—
==
— == e
== =
(= =
L = — <=
- =] == <
__% o —
=] P =] —
[— — (==
—t
[—
<r—
=
==
—_
==
- - - - - - - - =
e — — — — — > e —e— =
— pr=y — —> — S e = Pt far=y <=
— Py — —— e TR — =y Py —
— — par=y — far=y = == S par=y (=
Py — Py P ey Py =
par=y — par=y —1 = e——= s> o Py ==
— = e =2 s EE = =
- par=y — par=y — S e——= e o par=y e
= e e = e — e =]
— Py — Py e — T R er— iy Sy par=y =

i

1

T8 101 I330EIE]

RER

= =
—_ [— [— L -+
- wo-load atloc 56 > B = B = b= —a oa
= = 5 & — - &
= 5 = = = = e L =
—_— — < v - — —+ — =
[=) — s ot P4 = =1
= =1 = = = = = .
= =3 =g =5 = o
c%— ._g <> c%— g p———
= = =
Load at loc 56 =
Divide subroutine
e = =
= < = —_
= a — = =3
== =
=
Print subroutine =
=5
=
=5
=5
Main program = e =
% = =
-8B =5
= =
Enter main program T
Reciprocals Folder/Reciprocals.txt

e —=
—>
— =
-
()
<=
—
=3
e
=
—
=41
=
IS~
-
=
—
cra
h—
=0
< =2
b3 =3
e
=
=
=
=
—i
— -
=
<=

patdocn SUTIR] N0 81T

oo 10 Toqmy 10 worpe

 Debugging — post-mortem

Start reciprocals
... Executes. ..

Start PM5
Dial start location, e.g., 134 (113421 = start of data)

Debugging — Checking (i.e., tracing)

Assemble program with checking routine at end

C7 — execution trace C10 — arithmetical trace

épace P Z épace P Z

Master Master
Space P Z space P Z
GKT 45 K P F GKT45KP37(QqP10F
P 113 F P 113 F
PNDQPN PNDQPN

c7 C1l0

E 113 K P F

Using command line emulator

Demo5
punch — convert ASCII to EDSAC code

same conventions as Warwick emulator for special symbols etc
edsac — run emulator taking input from stdin

-v1/-v2 tracing

-Innn order limit

-s to start
-b for EDSAC replica SSI emulation

tprint — convert Teleprinter output to UTF

By contrast...

From Turing’s programming
guide for Manchester Mark 1

& Fig. 2. (continued).

How to get started

* Download Warwick simulator, work through examples
* Pitfalls:

Remember the store is tiny
Be careful about long versus short numbers.
Remember to scale calculations.

Remember no index registers so vectors, arrays and stacks tedious to manipulate —
consider writing subroutines / interpreters

Read library subroutine specifications carefully to understand parameter passing
conventions and any special control combinations to load them.

Use code letters to divide code and data into short blocks to avoid having to
renumber addresses if additional code or data inserted (or deleted).

Beware miscoding pseudo orders (i.e., constants)

Must use library routines (R series) to input long numbers — n.b., R2 will input long
integers at load time

Remember need to set teleprinter shift and to force out last character

