
Programming the
EDSAC

Andrew Herbert

The National Museum of Computing

16th November 2022

EDSAC FIRSTS

• The world’s first PRACTICAL electronic digital stored
program computer = computer of the modern kind

• The world’s first computer programming system

The Preparation of Programs
for an

Electronic Digital Computer

Maurice .V. Wilkes, David .J. Wheeler and Stanley Gill

Addison Wesley, 1951

With special reference to the use of the EDSAC

Why a Programming System?

The methods of preparing programs for the EDSAC were developed with a view to
reducing to a minimum the amount of labour required, and hence of making it
feasible to use the machine for problems which require only a few hours of
computing time as well as for those which require many hours. This necessitated
the establishment of a library of subroutines and the development of systematic
methods for constructing programs with their aid.

[WWG 1951]

Note emphasis on programmer productivity rather than on ”optimal
programming”.

To the potential user of an automatic digital calculating machine, the successful design
and construction of the machine itself is only a first step, though certainly an essential
one. In order that the machine should in practice be useful to him in the calculations
he may desire to carry out with its aid, the provision of an adequate organization for
using the machine is as important as the machine itself.

The process of building up [such] a library of subroutines, and testing its value by
practical use, appears to have proceeded further at the Mathematical Laboratory of
the University of Cambridge than elsewhere.

. . . it is a practical and useful system has been tested by experience; it divests
programming of the appearance of being something of a magic art, closed except to a
few specialists, and makes it an activity simple enough to be undertaken by the
potential user who has not the opportunity to give his whole time to the subject.

The subject is one which is still developing. . .

1. Store: ultrasonic delay line holding 1024 ✖️ 17 binary digit
numbers stored in true two’s complement form, so most
significant digit corresponds to the sign of the number.

2. Numbers are held in 1024 numbered “storage locations”
numbered serially from 0 to 1023 for reference. Each such
reference number is often called the “address” of the
associated storage location.

3. Hence 17 bit numbers are often called “short numbers”

4. Two consecutive storage locations, starting from an even
numbered address can be combined to make a 35 binary digit
“long number”.

5. Arithmetic unit: add, complement, collate, shift. Combine to
enable subtract, multiply, round, but no divide.

6. Accumulator register of 71 bits.

7. Multiplier register of 35 bits.

8. Input: 5 hole paper tape read by photoelectric reader.

9. Output: teleprinter.

10. Control: an “order” passes from store into the control unit
(“Stage I”), then it is executed {Stage II”). The machine then,
generally, then automatically takes the next order from the
location following that of the order just executed.

EDSAC Block Diagram

Order Code: O A F or O A D
O: Function code – operation to be carried out
A: Address of location to be used as operand
F or D: Short or Long number

A n Add C(n) to Acc

S n Subtract C(n) from Acc

H n Copy C(n) to Multiplier

V n Multiply C(n) by C(Mult) and add
product to Acc

N n Multiply C(n) by C(Mult) and subtract
product from Acc

T n Transfer C(Acc) to location n and clear Acc

U n Transfer C(Acc) to location n but do not
clear Acc

C n Collate C(n) with C(Mult) and add to Acc

R D Right shift Acc one place (✖️ 2-1)

L D left shift Acc one place (✖️ 2)

L 2p-2 F Multiply by 2p (2 < p <= 12)

R 2p-2 F Multiply by 2-p (2 < p <= 12)

E n F If C(Acc) >= 0 execute next order from
location n; otherwise proceed serially

G n F If C(Acc) < 0 execute next order from
location n; otherwise proceed serially

I n F Read next 5 bit code from input to location
n from tape reader

O n F Print character set up on teleprinter, then
set up m.s. 5 bits of location n as next
character

F Read back last set character

X Ineffective – no-op

Y Round Acc to 34 digits (i.e., add 2-35).

Z Halt and ring the bell

Fixed Point Arithmetic
Binary point assumed between top
two most significant bits, so
numbers are -1 <= x < 1.
Thus A order computes x+y-2 if
x+y>=1, and x+y+2 if x+y<-1.
When two long numbers are
multiplied together the resulting 69
digits are available in the
Accumulator.

0.5 + 0.25 + (0.5 * 0.25) = 0.875

Compute x+y+xy; x in location 6, y in
location 7.
(0) T 8 F
(1) A 6 F
(2) A 7 F
(3) H 6 F
(4) V 7 F
(5) Z 0 F
(6) +0.5 01000000000000000
(7) +0.25 00100000000000000
(8) (spare)

Demo1

Integer Arithmetic
Can treat accumulator as holding integers for A,
S, C, L, R, E, G but for N, V multiplier is always
treated as a fraction.

i.e., integers are stored as value * 2-16 so need
to multiply by 216 after multiplication.

10 + 5 + (10 * 5) = 65

Compute x+y+xy, x in location 8, y in location 9.

(0) T 10 F

(1) H 8 F

(2) V 9 F

(3) L 512 F ; multiply by 216 = 211*25

(4) L 8 F

(5) A 8 F ; note addition after

(6) A 9 F ; multiplication

(7) Z 0 F

(8) +10 00000000000001010

(9) +5 00000000000000101

(10) (spare)

Demo2

Loops

• Loop to print digit 7 five times

• C(11) is “figure shift”

• C(12) is “7”

• C(13) is RET

• Loops while Acc < 0 (-5, -4, -3, -2, -1)

• Note: need to set figure vs. letter shift

• Note: output delayed one character

• Note: only G < 0 and E <= 0, but no “equals” order

(0) T14F

(1) O10F ; Type figure shift

(2) S9F ; Set count = -5

(3) A10F ; Increment count

(4) O12F ; Type ‘7’

(5) G3F ; loop if count < 0

(6) O13F ; Type RET

(7) O11F ; Type figure shift

(8) Z0F ; Halt

(9) +5

(10) +1

(11) 01011000000000000

(12) 00111000000000000

(13) 11000000000000000

(14) (spare)

Demo3

Indexing
• Initially EDSAC had no index register.

• Invented for Manchester Mark 1 in 1949.

• Later adopted by EDSAC.

• So to do an indexed calculation, e.g., sum a vector,
we have to write self-modifying code that
manipulates program in store.

• To do arithmetic on orders we need to understand
binary format of orders:

• 5 m.s. bits: order code
• 1 bit : spare (later add B register to address)
• 10 bits: address in range 0-1023
• l.s. bit: 0 = F, 1 = D

• Demo adds contents of vector starting at location
15

• We have to add +2 to location 2 each time around
the loop to fetch the next element of table

(0) T13F ; Clear acc

(1) A14F ; Add sum

(2) A15F ; Add vector[0] **

(3) T14F ; Store in sum

(4) A2F ; C(2)

(5) A12F ; C(2)+2 (inc. address)

(6) U2F ; Modify (2) **

(7) S20F ; Check for end

(8) G0F ; Loop if not at end

(9) T13F ; Clear acc

(10) A14F ; Result

(11) Z0F ; Halt

(12) +2 ; address stride

(13) +0 ; workspace

(14) +0 ; sum

(15-19) +1 +2 +3 +4 +5 ; vector

(20) A20F ; sentinel (Demo4)

Emulators etc
• Demos thus far run using EDSAC team test program generator:

• Assembler written with “modern” facilities
• Emulator written in C with tracing facilities

• adapted from original by Lee Wittenberg

• On EDSAC we use a “Signal Sequence Injector” box to set up program in main
store from location 0 onwards

• Visit GitHub/andrewjherbert to find these:
• edsacasm - https://github.com/andrewjherbert/edsacasm - Python
• edsac - https://github.com/andrewjherbert/EDSAC-Emulator - C

• But this is not how EDSAC users wrote code...

https://github.com/andrewjherbert/edsacasm
https://github.com/andrewjherbert/EDSAC-Emulator

Initial Orders

Fixed program to load source
programs from paper tape into
store

Input is alphanumeric

Combined assembler and linker to
enable user code to be linked to
predefined library routines

Unique to EDSAC

Programming tour de force by
David Wheeler

Proc. Royal Society A, 202, August 1950: D.J. Wheeler,
Programme organization and initial orders for the EDSAC.
https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0121

Initial orders concepts

• Instructions in alphanumeric form rather than binary
• Like modern assembly code

• Control codes to direct initial orders where to load and how to fix up
addresses, start execution
• To enable linking in subroutines in arbitrary order

• Addressing relative to a previously set parameter (control code)

• But no error handling!

Warwick Simulator

Written by Martin Campbell-Kelly

Available for Windows and MacOS

GUI replicates original EDSAC operation

https://edsac.net

Includes Tutorial Guide, original EDSAC subroutine library, worked
example programs

Department of Computer Science, University of Warwick

Coventry CV4 7AL, UK

EdsacPC

A Tutorial Guide to the

EDSAC Simulator

by

Martin Campbell-Kelly

Windows 95, 98 and NT Edition

July 2001

https://edsac.net/

Hello world

T 64 K G K and E Z P F are
control combinations

𝛉 is a “parametric address”
T 64 K – load from loc 64
G K – set 𝛉 (to 64)
E Z P F – enter program at
Location 𝛉 (64)

* Is erase character (32 decimal)

N.B. Data input as instructions
Demonstration Programs/Hello.txt

EDSAC character codes

Programs prepared on perforator

Note NO figure / number shift

Output produced in Teleprinter code

Order field in instruction is the bit pattern of the
order character, i.e., A = 11101

Note convention for typing Greek letters when
using emulators

- 42 -

Table 2 Edsac Character Codes

Perforator Teleprinter Binary Decimal

Letter Figure Letter Figure
shift shift shift shift

P 0 P 0 00000 0

Q 1 Q 1 00001 1

W 2 W 2 00010 2

E 3 E 3 00011 3

R 4 R 4 00100 4

T 5 T 5 00101 5

Y 6 Y 6 00110 6

U 7 U 7 00111 7

I 8 I 8 01000 8

O 9 O 9 01001 9

J J 01010 10

p Figure Shift 01011 11

S S " 01100 12

Z Z + 01101 13

K K (01110 14

Erase1 Letter Shift 01111 15

Blank tape2 (no effect) 10000 16

F F $ 10001 17

q Carriage Return 10010 18

D D ; 10011 19

f Space 10100 20

H + H £ 10101 21

N - N , 10110 22

M M . 10111 23

D Line Feed 11000 24

L L) 11001 25

X X / 11010 26

G G # 11011 27

A A - 11100 28

B B ? 11101 29

C C : 11110 30

V V = 11111 31

Notes
1 Erase is represented by an asterisk (“*”) in the simulator. When this character is output, it sets the

teleprinter into letter shift.
2 Blank tape is represented by a period (“.”). This character has no effect on output.
3 The personal computer text environment has only a “newline” character. On the Edsac simulator,

the line-feed character is interpreted as a newline character, and carriage returns are thrown away.

4 The symbols q, f, D or p are typed as @, !, & and #, respectively.

Control combinations

T m K set load point to m

G K set 𝛉 parameter to load point

T Z restore 𝛉 parameter

E m K P F enter program at location m

E Z P F enter program at location 𝛉

P Z or P K start of new tape block

Subroutines – the Wheeler jump

A m F to pick up where calling
from (m+1)

A m F is 11000... so negative

C(3) = U 2 F

Calculate E m+2 F and store as
final instruction

Return to caller

- 24 -

Original documentation for all the subroutines is reproduced in the Program
Documentation pdf file. These subroutines will suffice for all the examples given in
the Tutorial Guide, and for most of the programs you are likely to think of. If you
decide to explore the EDSAC in more depth, you may need more subroutines; many
of these are readily accessible in Part III of Wilkes, Wheeler and Gill (1951).

Calling a subroutine on the EDSAC used the technique of the “Wheeler jump”,
shown below. Here, the instruction A m F loads itself into the accumulator (this will
be used to form the return link); and then the instruction G n F transfers control to the
first instruction of the subroutine in location n. In the subroutine, the instructions
A 3 F and T p F manufacture the return link and plant it as the last instruction of the
subroutine in location p. (The instruction A 3 F actually uses a constant permanently
kept in location 3 to produce the return link.) If all this went over your head on a first
reading, don’t worry; it is only really important when you want to write subroutines.
If you are just going to use library subroutines, all you need to remember is the
A m F, G n F calling sequence.

 m ú A m F ú pick up self ù
 ú ú ú
 m+1 ú G n F ú jump to subroutine ú master routine
 ú ú ú
 m+2 ú . ú control returns here û

 ú ú
 ú . ú
 ú ú
 ú . ú
 ú ú
 n ú A 3 F ú form return link ù

ú ú ú
 n+1 ú T p F ú plant return link ú
 ú ú ú
 ú . ú ú subroutine
 ú ú ú
 ú . ú ú
 ú ú ú
 p ú (.) ú return link planted here û

Fig. 10 shows the Cubes program. It consists of two routines: the master routine
written by the programmer (Fig. 10a), and the library subroutine P6. The first job is
to allocate storage for the program; this is done in Fig. 10b. The convention was to
load the program into location 56 upwards, placing all the subroutines and the master
routine end-to-end without leaving any gaps. The lengths of subroutines are given in
their specifications. Fig. 10c shows the make-up of the complete program tape.

On the original EDSAC, the procedure for punching a program was as follows (Fig.
11). First, the key-punch operator (who was usually the same person as the
programmer) would punch the master routine. Then the subroutine library tapes -
which were kept in small cardboard boxes in a steel filing cabinet - would be copied
onto the program tape, together with the master routine, and interspersed with control
combinations. When the subroutine tapes had been copied, they were rewound and
returned to the library cabinet.

Cubes

Nichomacus’ formula for cubes:

13 = 1

23 = 3 + 5

33 = 7 + 9 + 11

43 = 13 +15 + 17 + 19

etc

Use library routine P6 to print integers

.. represents blank tape

Demonstration Programs/Cubes.txt

Notes

Conventional “coding sheet” style for writing programs

No layout on EDSAC tape

No comments on EDSAC tape

Use of 𝛉 to make code position independent

Constants written as pseudo orders

Code letters:

Used to create position independent code and data cross references

Subroutine parameters:

Pass via fixed address (often 0)

Include in calling sequence

Run and delete open subroutines on the fly to save store...

Advanced features

- 28 -

shown below.

Code-letter Location Value
F 41 0

q 42 Origin of current routine
D 43 1

f, H, N, M … V 44, 45, 46 … 55 For use by programmer

As the initial orders load each instruction, the value corresponding to its code-letter is
added to the instruction before it is placed in the memory. Because the code-letters F
and D contain the integers 0 and 1 respectively, this has the effect of setting the length
indicator bit accordingly. Similarly, the code-letter q has the effect of adding the
origin of the current routine to the address of the instruction - this is how relocation is
achieved. You should not normally change F, q or D directly, for obvious reasons. All
the remaining code-letters can be used by the programmer. The parameters occupy
locations 41 to 55, and that is why the normal place to begin loading a program is
location 56. (The 15 code-letters also correspond to characters 17-31 in the collating
sequence - see Table 2 in the Appendix.)

In the master routine of the Reciprocals program, the code-letters q and M have been
used so that there are two separate regions in store: one region for the instructions and
another for the data. Now, if it subsequently proved necessary to remove or add an
instruction in the master routine it would only be necessary to adjust the value of the
M-parameter. Regionalizing the instructions and data in this way also makes
programming easier because it is not necessary to know the length of the program
before allocating storage for the data.

Subroutine Parameters

Library subroutines had a number of ways of specifying their parameters or
arguments. The easiest way was to use a dedicated storage location. This is used, for
example, in the print subroutine P6, which prints the integer placed in location 0F
before the subroutine is entered; similarly, the division subroutine D6 sets 0D to the
value of 0D/4D. A more flexible, though more complicated, arrangement was what
the Cambridge group called program parameters. Here one or more parameters were
specified in the calling sequence itself. For example, in the Reciprocals program the
library subroutine P1 prints the long fraction in 0D to n decimal places, where n is
specified as a program parameter (see lines 11 to 13 of the master routine in Fig. 12a).

Program parameters are the way that most software systems still parameterize library
subroutines. Incidentally, in Wilkes, Wheeler and Gill, there is another technique
known as “preset parameters” - this method has since fallen into disuse and we will
not discuss it here. But it is one of several now-forgotten ideas in EDSAC
programming awaiting rediscovery. (Just to add a little more confusion, note that
subroutine M3 used in Reciprocals does not conform to any of the types discussed
above. It prints out the text that follows it, and is then overwritten by the program
proper, so as not to take up any memory at run time. It was very useful for printing
out table headings and the like.)

Reciprocals Folder/Reciprocals.txt

Load at loc 56

Print caption

Load at loc 56

Divide subroutine

Print subroutine

Main program

Enter main program
M block at 21 - data

• Debugging – post-mortem

Start reciprocals

. . . Executes . . .

Start PM5

Dial start location, e.g., 134 (113+21 = start of data)

Debugging – Checking (i.e., tracing)

Assemble program with checking routine at end

C7 – execution trace C10 – arithmetical trace

- 35 -

 As in Fig 12c

 .
 .
 .
 space P Z

 Master

 space P Z

 G K T 45 K P F

 P 113 F

 PNDqPN

 C7

(a) Make-up of program tape

RECIPROCALS

STATATAG

OO
OMAG
4999999999

AATAAG
TATATAG

OO
OMAG
3333333333

AATAAG
TATATAG

OO
OMAG
2499999999

AATAAG
TATATAG
.

.
etc.

 (b) Printout

Fig. 15 Use of checking subroutine C7

 As in Fig 12c

 .
 .
 .

 space P Z

 Master

 space P Z

 GKT45KP37qP10F

 P 113 F

 PNDqPN

 C10

 E 113 K P F

 (a) Make-up of program tape

RECIPROCALS

+7541198730-0001373291+0625000000

+1250000000

.

4999999999+1875000000
-0001220703+0625000000+1875000000

.
3333333333+2500000000
-0001068115+0625000000+2500000000

.
2499999999+3125000000

-0000915527+0625000000+3125000000

.

2000000000+3750000000
-0000762939+0625000000+3750000000

.

.

.
etc.

(b) Printout

Fig. 16 Use of Checking Subroutine C10

- 35 -

 As in Fig 12c

 .

 .
 .
 space P Z

 Master

 space P Z

 G K T 45 K P F

 P 113 F

 PNDqPN

 C7

(a) Make-up of program tape

RECIPROCALS

STATATAG

OO
OMAG
4999999999

AATAAG
TATATAG

OO
OMAG
3333333333

AATAAG
TATATAG

OO

OMAG
2499999999

AATAAG

TATATAG
.

.

etc.

 (b) Printout

Fig. 15 Use of checking subroutine C7

 As in Fig 12c

 .
 .
 .

 space P Z

 Master

 space P Z

 GKT45KP37qP10F

 P 113 F

 PNDqPN

 C10

 E 113 K P F

 (a) Make-up of program tape

RECIPROCALS

+7541198730-0001373291+0625000000

+1250000000

.

4999999999+1875000000
-0001220703+0625000000+1875000000

.
3333333333+2500000000

-0001068115+0625000000+2500000000

.

2499999999+3125000000

-0000915527+0625000000+3125000000

.

2000000000+3750000000
-0000762939+0625000000+3750000000
.

.

.
etc.

(b) Printout

Fig. 16 Use of Checking Subroutine C10

Using command line emulator

Demo5

punch – convert ASCII to EDSAC code

same conventions as Warwick emulator for special symbols etc

edsac – run emulator taking input from stdin

-v1/-v2 tracing

-lnnn order limit

-s to start

-b for EDSAC replica SSI emulation

tprint – convert Teleprinter output to UTF

By contrast...

From Turing’s programming
guide for Manchester Mark 1

How to get started
• Download Warwick simulator, work through examples

• Pitfalls:
• Remember the store is tiny
• Be careful about long versus short numbers.
• Remember to scale calculations.
• Remember no index registers so vectors, arrays and stacks tedious to manipulate –

consider writing subroutines / interpreters
• Read library subroutine specifications carefully to understand parameter passing

conventions and any special control combinations to load them.
• Use code letters to divide code and data into short blocks to avoid having to

renumber addresses if additional code or data inserted (or deleted).
• Beware miscoding pseudo orders (i.e., constants)
• Must use library routines (R series) to input long numbers – n.b., R2 will input long

integers at load time
• Remember need to set teleprinter shift and to force out last character

