Voltage Regulation for Smart Grid

AFUNDAMENTALS

Jon Hiscock MD Fundamentals Ltd

"Improving the Health and Performance of the Electrical Grid"

Contents

- Introduction
- History
- Voltage regulation
- The changing grid
- What's the problem ?
- Solutions

FUNDAMENTALS

The Electrical Grid

Transmission and Distribution Network

The industry is regulated by Ofgem

Office for gas and electricity markets

- Value for customers
- Quality of supply
 - Customer minutes lost
 - Customer complaints
- Voltage delivered = 230 V (+10%, -6%)

History

Our History

Further Growth and Expansion

Network Voltages

Voltage Regulation

Tapchanger Maintenance

Why?

- Arcing
 - Oil degradation
 - Contact wear
- Mechanical system
 - Moving parts
- Old system
 - Design life 40 years ?
 - Records ?
 - Real maintenance ?
 - Genuine parts ?

Traditional AVC

- V_{tgt} = desired busbar voltage
- Tap change initiated if V_{VT} 'out of band'
- Time delay included for short term voltage fluctuations

Load / Line Drop Compensation (LDC)

Voltage drops on feeders ۲

LDC applied in proportion with I_{TL} •

Circulating Current

- Transformers operated in parallel for security of supply
- Circulating current flows when identical transformers on different tap positions
- Circulating current can cause increased losses

Voltage Control Principle

Voltage Control - TAPP

- Compares transformer load pf with target pf
- Voltage error when load pf deviates significantly from target pf
- Target pf for TAPP = actual pf of load (0.96 lag)

Changing Grid

Network Voltages

What's the Problem ?

Voltage Control Issues

AVC

G

(G)-

-00-

í ∳!

LOAD

, I_{TL}

I2 LOAD

- Voltage drops on feeders
- Load Drop Compensation (LDC) applied in proportion with ${\rm I}_{\rm TL}$
- I_{TL} no longer represents 'true' load LDC reduced
- Voltage errors due to powe>factor/variation

Reverse Power

Industry Challenges

Ageing assets

- Missing records
- Obsolete parts
- OEM ceased trading
- Non-operational AVC schemes
- Health and safety risks

Reverse Power

- Capability of OLTCs unknown
- Voltage control issues
- Planners under pressure to make decisions on connecting DG

Industry Challenges

FUNDAMENTALS

Challenges facing the Network Operators :

RIIO Deliverables -

- Accommodate more DG
- Reduce losses
- Improve health indices
- Reduce interruptions and complaints
- Continuous Innovation

Total Tapchanger Solutions

Our Offering:

- Formal partnerships with Powerserve, Ferranti and MR
- Access to original designs
- OEM spare parts from original drawings and material specs
- Multi-brand Full maintenance and upgrade of all types of Tapchanger
- Expanding expertise to provide a Total Solution

FUNDAMENTALS

Reverse Power -

- Theoretical Assessments
- On site inspection to assess Tapchanger condition
- Voltage control errors
- Support for network planners
- Upgrade service for full reverse power capability

Control Scheme Solutions

Tapchanger Retrofits

- Reasons for replacement
 - Life extension of transformer
 - Broken tapchanger
 - Reverse power limitations
 - Uprating
- Information required
 - Transformer winding configuration
 - Barrier board location
 - Interfacing requirements
 - Dimensions
 - Access

Solution for AVC

Problems

- Inaccurate LDC
- Voltage rise
- Voltage errors with parallel control
- Reverse power OLTC operation

Solution = Smart AVC

- Extra current measurements feeders
- Accurate load calculation
- Generator measurement / estimation
- Enhanced TAPP accurate parallel control
- Built-in load averaging
- Reverse power blocking

SuperTAPP SG Features

Withdrawable case, One serial and two Ethernet rear ports for easily upgradeable IEC 61850, DNP3 and without disturbing IEC 60870 existing wiring Top in progress 99 O AVC disabled THIS PANEL © AVC alarm © Tap dwnger taut SCADA O See mug on LCD ANUAL RAISE OWE

Digital and mA I/O modules for plant, SCADA and tap position indication

Front panel USB port for settings and data download

Easy to use control panel making engineering simple

Runaway Prevention

Voltage control scheme problems caused by tapchanger mechanism components

Relay trip coi (runaway prevention)

Motor

Scheme Design Support

Generic AVC system design exists

We can integrate SuperTAPP SG into existing schemes

PC Software

Settings management Relays management Events logging

Monitoring and maintenance data

Summary

- Voltage regulation important for network operation
- Transformer, OLTC, drive mechanism, panels, kiosks, relays
- Modern issues
 - Distributed generation
 - Aged assets
- Solutions
 - Smart AVC relay
 - AVC scheme upgrades
 - Total Tapchanger Solutions

FUNDAMENTALS

End of Presentation

Any questions?