[image:] Need help, or have a question? Please email me – mike.mckean@msm-systems.com

A detailed technical paper
with four accompanying videos, showing
how an “Internet of Things” sensor
can be designed, built & programmed.

	[image:]

	[image:]

	[image:]
	[image:]

August 2017
Mike McKean mike.mckean@msm-systems.com 07539 341 216

DISCLAIMER; I believe that what I have written here is correct. However, I will not accept responsibility for any errors. Always use the manufacturers specifications. I have included url’s to the manufacturers documents.
Contents
Introduction	3
Maximising RoI	3
Supporting Videos	3
The 1980’s and 1990’s	3
What’s changed in 30 years	3
Development Issues	3
Reading the Manual	6
Development Tools	6
Security	7
The Microchip RN4870 I.C.	8
Programming pins	14
Square Wave Generator	19
Building your own RN4870 Boards	20
Project - Streaming Data	22
Multiplexed Bi-Directional Mixed Data Streaming	24
Custom Services & Characteristics	25
Project - Remote Monitoring	27
Useful Technical Information	32
My Background in IoT	36
What am I bad at?	36
My IoT Company	36
Other Publications	37

[bookmark: _Toc490295061]Introduction
This paper will explain how to design, test, and build an Internet of Things (IoT) sensor, using a Microchip RN4870. It includes circuit diagrams, pin-outs, explanations of the technologies, programming scripts and configurations. I also include the same for some external tools I made, in the form of external real-time change monitoring, clocking and logic circuits.
[bookmark: _Toc490295062]Maximising RoI
Maximum benefits will be realized by using IoT technology in situations where something is; old, distant or difficult to access. Older systems were not designed or built with sensors or Bluetooth in mind. Some were designed to be tamper proof. Others will not have any easy to access to inputs/outputs, at least not of the type an IoT sensor could connect with. But these are probably the systems that will provide the most benefits in terms of efficiencies, and RoI.
[bookmark: _Toc490295063]Supporting Videos
I included four short videos, which are screen recordings of technical demonstrations. They are aimed at helping to explain some technology, or to demonstrate it in use. Their links are included in “red” in the relevant parts of this paper.
[bookmark: _Toc490295064]The 1980’s and 1990’s
	I began working on this type of technology in the mid 1980’s. At the end of this paper you can review a list with url links, to some of my other recent technical publications, which include a range of associated compute technologies.
	[image:]

[bookmark: _Toc490295065]What’s changed in 30 years
The internet of things is largely built on the same technology. The differences are;
· Things are smaller, and packaged, in a modularised way. Do we understand what’s inside?
· People want everything quicker. That includes customers, and business executives. There is pressure on developers and project managers to deliver more functionality, quicker.
· Hackers are prolific. In some communities they are public heroes. They can make a lot of money. I am ex-military, secure communications. I understand security.
· GDPR (etc). When does a logic 1, received at a remote sensor become private or personal information? I don’t cover this off in this paper. But I understand the issues.
· I have made my own real-time vulnerability tool. It can alert to vulnerabilities in IoT sensors, both during development, and in production.
If you find any mistakes, or you have any advice, or a better explanation for anything, please email me; mike.mckean@msm-systems.com Thanks, Mike.
[bookmark: _Toc490295066]Development Issues
Let me begin by stating that I like the Microchip range of products, and the RN4870. But, like any technology there can be issues. So, please do not consider the following list of issues, as me being negative with regard to Microchip. In fact, it is the opposite. I am very supportive of them. If you have a technical role, you will know that we all benefit if we honestly share experiences, and that technologies are never perfect.
Variables not working?
I found a way around this. I tried using the $VAR1 commands as per the User Manual Page 50, para 3.1.4. I tried several different options but I was unsuccessful. I delivered the same result, but used different commands.

GPIO pins don’t stay programmed?
This is relatively common. The Microchip RN4870 has a default setting on pins of Logic 1. If you program a GPIO pin to be a logic 0, and then read it, the pin reverts to a 1? i.e. if you are setting up a sensor, during a development project, you cannot simply program GPIO pins, to a set voltage, and then expect them to remain at that voltage. If you are in the early stages of development, use a breadboard, and tie pins high or low.

Digital Voltmeter
With specific regard to the previous point. Consider using a digital voltmeter. Then you can “see” voltage levels on pins, accurately. When you use a digital voltmeter, you don’t read the pin, so you don’t change it. That could be an alternative way of performing a test?

GATT Characteristics change?
As you change from “not connected” to “connected”, the available characteristics change. So, beware of this when you are checking to see if what you have done works, or not. E.g. you may think that the characteristic you have programmed is not working, but that’s because it’s only active when in the connected state.

GATT Characteristics are “there” but don’t work?
This refers to “Notification” and “Indication” on “Characteristics”. You have to enable them. You have to do that from the client, after connecting, and you need to use the “CI” command during the connection. You can do that via a script, after connecting.

Note. You don’t enable the characteristic handle itself. You enable the “characteristic enable” handle. E.g. if the “read handle” is 1234, then you will most likely see that right below it, is the “read enable handle”, and it is numbered 1235.
Not all commands work, all of the time?
Some commands only work, when you are in the right mode. Or connected. Or they are for scripting only. If you try entering some commands and you receive an error prompt, just check what mode you are in, and find out if those commands should be enabled.

Cannot connect in command mode !
· Low Power Mode
Some changes will disable your return to command mode? For instance, if you enable low power mode, that changes the clock from 16MBits to 32Khz, which in turn disables the UART connection. So, if you want to enable low power mode, you need to use Pin 26 (P3_3) to switch the high speed clock back on, and hence the UART interface. I include a diagram and explanation of how this works, see the note at the bottom of page 20.
· Command Prompt Timing
Similar to above, except that there needs to be a 100ms delay between the three x $$$ inputs. If you don’t insert the delays, then the command is not recognized. I have not experienced this so far.

Common earth
When measuring voltage levels use a common earth. Otherwise you are likely to see readings that don’t make sense.

External components
A circuit that is using “logic 1’s and 0’s” should work, but because you add components that change voltage levels, or frequency characteristics, then voltage levels may change.

Fan Out
Fan-out will be an issue when trying to use low power I.C’s to drive external, regular components or logic I.C’s. To avoid this, use a buffer type circuit. I used hex inverters for driving more complex external logic circuits.
Note. For simple, individual signals, I found using a 300R (ohm) resistor enabled a 1.6V LED to operate, directly from a GPIO pin connector.

Ground Plane
If you build your own boards, make sure to design your PCB’s, taking into account Ground Plane factors. Remember without a correctly placed/sized ground plane, your antenna characteristics are severely impaired.

Soldering
Soldering, be careful. Dry Joint (soldering problem), while the wire may be physically connected, there will be a poor electrical connection.

Component selection
Some components have different characteristics at different frequencies. The most obvious being capacitors. They are almost short circuit at high frequencies, and have a much higher reactance at low frequencies.

Upgradability
Design it with a connector? Design it so that someone else can come along in XX years (or days) time, and add an external module. None of us know what’s coming. If you include some form of daughter board connector, at least you are trying to plan, for the future. Are you considering doing upgrades over the air? What about security?

Documentation
A really important part of the project. You need to document everything. Think about version control. Who is authorised to make changes.

Maintenance
You need to consider this. Are the components you are using likely to be around in XX years? Are they about to become End of Life? How easy is it to replace the board? Does the system use a battery? How easy is it to replace? Weather proofing? If it’s too easy to open the device, then the hacker, or vandal will open it. It’s a tough circle to square? Are you going to offer to support this ongoing? Then how do you control day to day issues?

The “Two Key Process”. The catastrophe, waiting to happen
Security, and mistakes. People think they have a “two-key” system, which ensures the safety of their IoT environment. I ask for them to explain what that is. Then they say, they always make sure a second control signal is input, from another source, before we operate the sluice gate (or other control). I ask, how is that done?

Then they explain that they use an AND Gate, and both inputs have to be a logic 1, before the remote gate/switch etc is operated.

So, the sluice gate control, to flood the valley is 100% dependant on a 20 pence AND gate? Did you know that in most Logic I.C’s, if a pin becomes open circuit, the pin “floats high”. What does that mean? It means that if someone pulled a cable, or stole it, or a connection went open circuit, that an AND Gate, and almost every logic I.C out there, sees that as a Logic 1, input !
So, careful about what you design, or you could flood a valley, just because someone pulled a cable out!
Notes
· The RN4870 pins and all the I.C’s I am using all float high with no external input. Check your vendors documentation for the default voltage/logic setting.
· I saw something similar with a storage cluster. The only thing that had not been tested was unplugging a particular cable? i.e. you need to design things, so they are constructed to always be in a failure condition. You don’t design them so everything works, until someone does something you had not thought of?
[bookmark: _Toc490295067]Reading the Manual
I am a firm believer in reading the manual. I have seen so many people “giving up”, when the answer is there, in the manual. See; http://www.microchip.com/wwwproducts/en/RN4870
People who write manuals are not perfect, and mistakes/typos happen. If the manual says one thing, but you see another, then your circuit may be right, but the manual could be wrong. This is a bigger issue with newer, recently released product, where it’s almost certain to have typos or mistakes. In such a situation, try reviewing any previous I.C’s manuals. You may get lucky and find the problem yourself. The manual also explains how to avoid some potentially, annoying pitfalls, so it is well worth reading.
Notes
· With regard to the Microchip documentation, I found it very good. However, don’t rely just on the RN4870 User Manual. Here’s one example; you will find references in there to pins that don’t exist? That’s because the technical author, wrote another manual, for a similar product. The other manual is for the RN4870 PICTail. It uses the exact same RN4870 I.C, but is a development board, and has more pins. That’s where the additional pin references come from. So, with regard to the RN4870, you should read the most up to date RN4870 user manual, alongside the RN4870 PICTail user manual.
· I found several people, complaining about losing access to the RN4870. The manual explains several reasons why this will happen. If you read the manual, it explains why this will happen, and how to regain access. Also see my notes at the bottom of page 21, in this paper, which explain how to avoid this issue.
[bookmark: _Toc490295068]Development Tools
During the design, and build of any system, I need to see what is occurring. I need to know what state the various pins are in. That will help me to know if the programming I am implementing is correct or not. I also used this technology for a security toolset that I have built. It helps me to secure devices, when others add external circuitry, and/or new updates, or applications. See following paragraphs for more detail.
Real Time Change Monitoring
Video https://www.msm-systems.com/internet-of-things/
I have made a tool (see above url) which allows me to monitor the state of the device, as I change each individual line of code. In order, to “see” these occurrences, in real time, I set up a series of logic controlled LED’s. They connect to various pins on both RN4870’s and allow me to see, any changes to important functionality, as I change settings on the RN4870’s.
In this case, my monitoring tool monitors two status pins. I use Boolean algebra to return results which allow me to see which of four states the RN4870 is in. These four states are important to allowing me to “see” what is happening with the RN4870, as I build the circuitry and program it.
Real Time Change Monitoring Schematic

Real Time Change Monitoring Circuit Diagram

Real-Time Change Monitoring Status Pins
	Status 1
	Status 2
	State

	High
	High
	Power On

	High
	Low
	Standby state

	Low
	Low
	Connection established

	Low
	High
	Data session open (Transparent UART)

[bookmark: _Toc490295069]Security
IDE’s
The more abstraction layers you put in between you and the I.C. then the less you know. The more layers of someone else’s; code, tools, firmware, patches you use, then the less you know, and the more vulnerable you are. If you want something quick, then use whatever IDE environment you are most comfortable with. If you want something secure, then work at logic I.C level, and/or machine code level. The balance is somewhere in between.

I suggest that during a large project, you insert regular security checkpoints (no pun intended). Don’t wait until you have a polished solution, and then arrange an ethical hack.
Ethical Hack
I used to supply a managed service to one of the largest banks in the world. I had two engineers. One of my contacts explained he was about to spend $30,000 on an ethical hack. He let one of my engineers take a look first. He hacked it in a few minutes. I think he found a weakness through the help options. The point is, don’t wait until a few weeks before it’s due to go into production, before doing your only ethical hack. It’s way too late then, and way too much work, to un-engineer everything. Do, your security checks at regular intervals. Then if you have a problem, you can flag it up early, and who is going to blame you for finding a security issue early? How much money and embarrassment did you just save the business?

Security Monitoring Tool
As you have guessed (from above) I have made my own tools which can evaluate the security of I.C’s, including FPGA’s, and ASIC’s. I use this type of technology as part of my “own development tools”. My security solution includes the same type of technology as used in “Real Time Change Monitoring”. I can build this for any type of circuit.

Design Stage Vulnerabilities
Once I understand the I.C. architecture, and what happens in various states, I can identify vulnerabilities. Once I have done that, I find out what happens in terms of “pin voltage changes”. I can then design a simple logic circuit which will trigger an output for any given set of conditions.

Post Production Vulnerabilities
This can include changes made through adding new application functionality, changes in the connectivity, networking, hardware, etc. Any changes at all which impact the security of the device will be identified.

Low Latency Vulnerabilities
Any short duration vulnerabilities, can be latched, and an alert sent, or remain until acknowledged, or saved to an audit report. There could be options for the security vulnerability to remain identified, stored, an alert sent, and for the security monitoring to continue in real time.

Unlisted Commands
Remember that this technology is a matrix of addressable pins. Once you address them you can write/read 1’s or 0’s to/from cells. Here’s what could happen, and I know because I have done it;
· If you don’t see a command that you want to use, then work out what the addresses of the pins would be.
· Calculate the hex value you want to read/write. Then construct the command, and try it?
· I found one that worked.
Bluetooth Radio
Installing encryption just before the antenna, means that everything before it, is vulnerable? Radio systems are constructed from layers of frequencies. E.g. If the public addressable frequency of Bluetooth is approximately 2.4GHz, then that is not the only frequency being used in a Bluetooth radio system.
Radio systems start with lower frequencies, and modulate information into them. Then depending on the radio system, they then multiple the frequency upwards.
What you would need to do, is identify the lower “intermediate frequencies” called “IF’s”. You should then massively attenuate and screen any such external frequencies.
I have not done any research on the Bluetooth radio stack, so I don’t know what issues there could be. (Secure radio systems was my trade in the military.)
[bookmark: _Toc490295070]The Microchip RN4870 I.C.
Short explanation of the RN4870.
The RN4870 is a peripheral interface controller. It has a small CPU, with a limited set of commands, and a small amount of NVM, that can store programming.
It has four types of connectors to the “outside world”;
· Wire/Pin Connected;
· Analogue. These are input only. i.e. they are connected to external devices, and they receive an analogue input. The voltage range is measured in millivolts.
· Digital. These can be input or output. Generally, Logic 1 = 3.3V, and Logic 0 = 0v.
· UART. This provides local access via a serial connector. I used a tera term, terminal emulator for the UART/USB connection. Is simple, robust and reliable. (and free).
· Radio;
· Bluetooth radio.

What pins are on the RN4870?
With regard to the Microchip documentation, I found it very good. However, don’t rely just on the RN4870 User Manual. You will find references in there to pins that don’t exist? That’s because the technical author wrote another manual. That was for a development board, which also used the RN4870. It uses the exact same RN4870 I.C, but because it is a development board, it has additional pins for testing etc. That’s where the additional pin references come from. So, you should read the most up to date RN4870 user manual, alongside the RN4870 PICTail user manual.
· RN4870 manual 		http://www.microchip.com/wwwproducts/en/RN4870
· RN4870 PICTail manual 	http://ww1.microchip.com/downloads/en/DeviceDoc/50002547A.pdf

Pin Numbering Scheme
The Microchip documents use (typically) three identifiers for each pin, and as above the pin numbering sometimes, is misleading. Please see diagram from the RN4870 PICTail manual. Here are some examples;

	I.C. Pin
	Label
Inside I.C.
Schematic
	Label on
Circuit
From I.C. Pin
	Label on
External
Board
Connector

	5
	P2_2
	P22
	P22

	19
	P2_4
	P24
	P24

See diagram below from the RN4870 PICTail user manual.
[image:]

RN4870 Pin Out
The table below, lists out the pins, as per the RN4870 official specification. The difference in my version is that I removed a column which listed out the RN4871 product, which is a variation on the RN4870. If you find different references, e.g. from the PICTail manual, always cross-reference them back here, or to the official RN4870 user manual. I also included some additional remarks, in some areas.
RN4870 Pin Out Table
	RN4870
	Name
	Type
	Description
	Comments

	1
	GND
	Power
	Ground reference
	

	2
	GND
	Power
	Ground reference
	

	3
	GND
	Power
	Ground reference
	

	4
	VBAT
	Power
	Positive supply input. Range: 1.9V~3.6V
	

	5
	P2_2
	D I/O
	GPIO, PWM1,
Default: Input; pulled-high
	

	6
	VDD_IO
	Power
	VDD; power input
Same input pin as VBAT
Can be connected to the VBAT pin
	

	7
	VDD_IO
	Power
	VDD; power input
Same input pin as VBAT
Can be connected to the VBAT pin
	

	8
	ULPC_O
	Power
	1.2V ULPC LDO output Used for diagnostic purposes
Do not connect to any pin or device
For measurement, connect a bypass 1 µF capacitor to ground
	

	9
	P2_3
	D I/O
	GPIO, PWM2,
Default: Input; pulled-high
	

	10
	BK_O
	Power
	1.55V Buck power supply output for diagnostic purpose
Do not connect
	

	11
	P2_7
	D I/O
A I/p
	GPIO; default: Input; pulled-high AD14
Configured as the TX_IND pin by default
	

	12
	P1_1
	D I/O
A I/p
	GPIO; default: Input; pulled-high AD9
Configured as the BLEDK_STATUS1_IND pin by default
	

	13
	P1_2
	D I/O
A I/p
	GPIO; default: Input; pulled-high AD10
Seems to be available?
	

	14
	P1_3
	D I/O
	GPIO; default: Input; pulled-high AD11
	

	15
	P0_0
	D I/O
	GPIO; default: Input; pulled-high AD0
Configured as the UART_CTS pin by default
	

	16
	P1_0
	D I/O
	GPIO; default: Input; pulled-high AD8
Configured as the BLEDK_STATUS2_IND pin by default
	

	17
	P3_6
	D I/O
	GPIO; default: Input; pulled-high PWM0
Configured as the UART_RTS pin by default
	

	18
	P2_0
	D I/p
	System configuration input; 1: Application mode
0: Test mode, for Flash update and EEPROM settings
Default: Input; pulled-high
	

	19
	P2_4
	D I/O
	GPIO; default: Input; pulled-high
	

	20
	NC
	—
	No Connection
	

	21
	RST_N
	D I/p
	Module Reset; active-low; Internally pulled-high
	

	22
	UART_RX
	D I/p
	UART Data input
	

	23
	UART_TX
	D O/p
	UART Data output
	

	24
	P3_1
	D I/O
	GPIO; default: Input; pulled-high Configured as RSSI_IND pin by default.
Use this indication pin to indicate the quality of the link based on the RSSI level. If the RSSI level is lower than the specified threshold value, then the RSSI indication pin goes low. Set the threshold for the RSSI link quality in EEPROM.
	

	25
	P3_2
	D I/p
	GPIO; default: Input; pulled-high
Configured as the LINK_DROP pin by default.
Use this pin to force the module to drop the current BLE link with a peer device. Pulling the Link Drop pin low forces the connection to close. The pin needs to be pulled low for at least 10 ms.
	

	26
	P3_3
	D I/p
	Use this pin to enable communication with the UART when the module is in Low- Power mode. When not in Low-Power mode, the module runs on a 16 MHz clock. If Low-Power mode is enabled on the module by using command SO,1, the module runs on a 32 kHz clock thus reducing power consumption. However, in Low-Power mode, the host MCU cannot communicate with the module via the UART since the UART is not operational. If the user intends to provide data or commands via UART in the Low-Power mode, then the UART RX INDICATION pin must be pulled low and the user needs to wait for at least five milliseconds before sending the data. Pulling the UART RX INDICATION pin low allows the module to operate the 16 MHz clock and to enable UART.
	

	27
	P3_4
	D I/p
	GPIO; default: Input; pulled-high
Configured as the PAIRING_KEY pin by default
	

	28
	P3_5
	D I/O
A I/p
	GPIO; default: Input; pulled-high
LED1; provides indication whether the module is ON/OFF
	

	29
	P0_7
	D I/O
	GPIO; default: Input; pulled-high
Configured to the LOW_BATTERY_INDICATOR pin by default. Pin output goes low when the VDD is below a specified level. To set the threshold level, change the EEPROM settings.
	

	30
	P0_2
	D I/O
	AD2
LED0: Provides indication whether the module is in ON/OFF mode
	

	31
	GND
	Power
	Ground Reference
	

	32
	GND
	Power
	Ground Reference
	

	33
	GND
	Power
	Ground Reference
	

What pins are available to use?
I need to identify which Pin(s) I can use. In the table below, pins identified as being already in use are greyed out. I have decided to use pins 5 (P2_2) and 19 (2_4).
Note. Some pins are noted as being solely, for digital input/output. Others have a dual, configurable role, as also being available for use as analogue inputs. I decided to opt for the straight forward, dedicated digital use pins. If I was to exploit these I.C’s more, I will invest time in testing out the dual role, analogue/digital pins.
Table of Available Pins
	RN4870
	Name
	Type
	Description
	Comments

	1
	GND
	Power
	Ground reference
	

	2
	GND
	Power
	Ground reference
	

	3
	GND
	Power
	Ground reference
	

	4
	VBAT
	Power
	Positive supply input. Range: 1.9V~3.6V
	

	5
	P2_2
	D I/O
	GPIO, PWM1,
Default: Input; pulled-high
	

	6
	VDD_IO
	Power
	VDD; power input
Same input pin as VBAT
Can be connected to the VBAT pin
	

	7
	VDD_IO
	Power
	VDD; power input
Same input pin as VBAT
Can be connected to the VBAT pin
	

	8
	ULPC_O
	Power
	1.2V ULPC LDO output Used for diagnostic purposes
Do not connect to any pin or device
For measurement, connect a bypass 1 µF capacitor to ground
	

	9
	P2_3
	D I/O
	GPIO, PWM2,
Default: Input; pulled-high
	

	[bookmark: _Hlk490223406]10
	BK_O
	Power
	1.55V Buck power supply output for diagnostic purpose
Do not connect
	

	11
	P2_7
	D I/O
A I/p
	GPIO; default: Input; pulled-high AD14
Configured as the TX_IND pin by default
	

	12
	P1_1
	D I/O
A I/p
	GPIO; default: Input; pulled-high AD9
Configured as the BLEDK_STATUS1_IND pin by default
	

	13
	P1_2
	D I/O
A I/p
	GPIO; default: Input; pulled-high AD10

	

	14
	P1_3
	D I/O
	GPIO; default: Input; pulled-high AD11
	

	15
	P0_0
	D I/O
	GPIO; default: Input; pulled-high AD0
Configured as the UART_CTS pin by default
	

	16
	P1_0
	D I/O
	GPIO; default: Input; pulled-high AD8
Configured as the BLEDK_STATUS2_IND pin by default
	

	17
	P3_6
	D I/O
	GPIO; default: Input; pulled-high PWM0
Configured as the UART_RTS pin by default
	

	18
	P2_0
	D I/p
	System configuration input; 1: Application mode
0: Test mode, for Flash update and EEPROM settings
Default: Input; pulled-high
	

	[bookmark: _Hlk490223565]19
	P2_4
	D I/O
	GPIO; default: Input; pulled-high
	

	20
	NC
	—
	No Connection
	

	21
	RST_N
	D I/p
	Module Reset; active-low; Internally pulled-high
	

	22
	UART_RX
	D I/p
	UART Data input
	

	
	
	
	
	

	23
	UART_TX
	D O/p
	UART Data output
	

	24
	P3_1
	D I/O
	GPIO; default: Input; pulled-high Configured as RSSI_IND pin by default.
Use this indication pin to indicate the quality of the link based on the RSSI level. If the RSSI level is lower than the specified threshold value, then the RSSI indication pin goes low. Set the threshold for the RSSI link quality in EEPROM.
	

	25
	P3_2
	D I/p
	GPIO; default: Input; pulled-high
Configured as the LINK_DROP pin by default.
Use this pin to force the module to drop the current BLE link with a peer device. Pulling the Link Drop pin low forces the connection to close. The pin needs to be pulled low for at least 10 ms.
	

	[bookmark: _Hlk490223661]26
	P3_3
	D I/p
	Use this pin to enable communication with the UART when the module is in Low- Power mode. When not in Low-Power mode, the module runs on a 16 MHz clock. If Low-Power mode is enabled on the module by using command SO,1, the module runs on a 32 kHz clock thus reducing power consumption. However, in Low-Power mode, the host MCU cannot communicate with the module via the UART since the UART is not operational. If the user intends to provide data or commands via UART in the Low-Power mode, then the UART RX INDICATION pin must be pulled low and the user needs to wait for at least five milliseconds before sending the data. Pulling the UART RX INDICATION pin low allows the module to operate the 16 MHz clock and to enable UART.
	

	27
	P3_4
	D I/p
	GPIO; default: Input; pulled-high
Configured as the PAIRING_KEY pin by default
	

	28
	P3_5
	D I/O
A I/p
	GPIO; default: Input; pulled-high
LED1; provides indication whether the module is ON/OFF
	

	29
	P0_7
	D I/O
	GPIO; default: Input; pulled-high
Configured to the LOW_BATTERY_INDICATOR pin by default. Pin output goes low when the VDD is below a specified level. To set the threshold level, change the EEPROM settings.
	

	30
	P0_2
	D I/O
	AD2
LED0: Provides indication whether the module is in ON/OFF mode
	

	31
	GND
	Power
	Ground Reference
	

	32
	GND
	Power
	Ground Reference
	

	33
	GND
	Power
	Ground Reference
	

[bookmark: _Toc490295071]Programming pins
Analogue pins.
These are “input only” pins, and operate in the millivolt range.
Notes
· The documentation suggests the RN48670 has analogue I/O, see Page 29 of the User Manual, where it states; “Read and write analog data”. However, it shows an analogue to digital converter, but no digital to analogue converter. The documentation on pages 62 through to 64, list all the commands. While analogue read commands are shown, none are given for analogue output.
· Calibration of Analogue Inputs. I have not yet investigated this properly. But a quick review of the circuitry, using a standard digital voltmeter, showed that the supplied voltage in, was slightly less than that output on various GPIO pins. Therefore, the RN4870 has some form of voltage pumping, and regulation. When I checked the analogue read out, using the command; @,4, the Hex equated to 3.4. The level I read was circa 3.2V. The analogue voltage in, is measured in millivolts. I would suggest that a few inputs are made, at e.g. 0V through to VBAT. We should check for linearity. That’s important as you could be using this to measure large, external voltages.
[bookmark: _Hlk490224070]Analogue Channels
	Analog Port Parameter
	RN4870 Analog Port
	Default Function

	0
	P1_0
	Status 2

	1
	P1_1
	Status 1

	2
	P1_2
	None

	3
	P1_3
	None

	4
	Battery sensor
	Battery Sensor

	5
	Temperature sensor
	Temperature sensor

The analogue channels are simple.
P1_1 would be identified as 1 and P1_0 would be identified as 0

Analogue Read Command …… @,<0 to 5>
e.g. @,5 would read in a four digit hex number which represented the analogue temperature of the RN4870 I.C. So it would return something such as; 1234

Analogue Write Command
There is not a command listed to write to an analogue channel/port. If you refer to the summary of commands, in the RN4870 User Manual, starting on page 62 through to page 64, you will see that none is listed to write to an analogue port. See: http://www.microchip.com/wwwproducts/en/RN4870 Further, if you review the functions of the analogue ports you can also see they are all inputs. This is also confirmed in the user manual, where all these pins are shown as Analogue Inputs. This means you cannot take a digital hex value, and output that on an analogue port as a discrete voltage. If you had such a need, you would use an external Digital to Analogue converter, I.C.

Digital pins
I am going into a bit of detail to explain how the individual pins are accessed. E.g. see P2_2, highlighted in yellow.

Digital Pin I/O Matrix
	Bitmap
	RN4870 PICTail
Pins
	RN4870
Pins
	Function

	01
	P2_2
	5
	PWM

	02
	P2_4
	19
	D I/O

	04
	P3_5
	28
	Digital I/O or Analogue input, power on/off LED

	08
	P1_2
	13
	

	10
	P1_3
	14
	

Bitmap representation of digital pins				
	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	01

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	02

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	04

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	08

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	10

P2_2 would be identified in hex as 01
P1_3 would be identified in hex as 10

Digital Write Command …… |O
You can set the output level on a digital pin, or even multiple digital pins, using one command. 	
Command:	|O,07,05	// Set digital I/O output on P2_2, P2_4 and P3_5.
// Set P2_2 and P3_5 high and P2_4 low.
		
07 refers to the bitmap of the digital I/O ports affected. If the hex value is 07, or 00000111 then the following pins are affected; 22 + 21 + 20 = 4 + 2 +1 = 7

Table explanation of how logic is set on each output pin
	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	Hex

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	01

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	02

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	04

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	

	Outputs
	
	
	
	
	
	1
	0
	1
	05

The output value is hex 05, which is 00000101. So the following values are output on each pin;
P2_2 = logic 1
P2_4 = Logic 0
P3_5 = Logic 1

Digital Read Command …. |I
Command:	|I,06	// Read digital I/O P2_4 and P3_5. As an example, if return value is 04,
// then P2_4 is low and P3_5 is high

Table explaining how the read command addresses the pins
The 06 part of the command can only be made up of P2_4 and P3_5, because 06 can only be made up of 22 + 21 = 4 + 2 = 06. So those two pins will be accessed, and their data read.

	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	Hex

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	02

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	04

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	

	Outputs
	
	
	
	
	
	1
	0
	0
	04

To explain the above differently, if both P2_4 and P3_5 contained logic 1’s, the output would be;
	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	Hex

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	02

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	04

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	

	Outputs
	
	
	
	
	
	1
	
	1
	05

Configuring the function for Pin 19
In this case Pin 19 (P24) was already available. If it was not, then I could simply have entered SW,04,00 That would have set Pin 19 (P24 , Pin Index 04) to Function 00, which is none (or no pre-set function). i.e. available for me to use.
Note. I can change most pins from a default allocation to “none”, so that I can then use that pin for something else. You usually need to be careful that anything you stop reporting on, is not needed elsewhere, or later.
Table of Pin Default Functions and their Configurable Functions
	Pin Index
	Pin
	Default Function
	
	Function
Index
	Function Description

	00
	P07
	Low Battery Indication
	
	00
	None

	01
	P10
	Status 2
	
	01
	Low Battery Indication

	02
	P11
	Status 1
	
	02
	RSSI Indication

	03
	P22
	None
	
	03
	Link Drop

	04
	P24
	None
	
	04
	UART RX Indication

	05
	P31
	RSSI Indication
	
	05
	Pairing

	06
	P32
	Link Drop
	
	06
	RF Active Indication

	07
	P33
	UART Rx Indication
	
	07
	Status 1

	08
	P34
	Pairing
	
	08
	Status 2

	09
	P35
	None
	
	09
	Pin Trigger 1

	0A
	P12
	None
	
	0A
	Pin Trigger 2

	0B
	P13
	None
	
	0B
	Pin Trigger 3

	
	
	
	
	0C
	UART Mode Switc. Rising edge for UART Transparent mode; falling edge Command mode.

Read Pin 19; |I,02
Let’s read pin 19 (P2_4). P2_4 is addressed using bitmap 00000010 or 02. See Table below.
So the command is;	|I,02	// Read digital input at P2_4. The response will be either 00 or 02
	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	Hex

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	02

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	

	Outputs
	
	
	
	
	
	
	00 or 02
	
	

Read Pin 5; |I,01
Let’s read pin 19 (P2_2). P2_2 is addressed using bitmap 00000001, or 01. See Table below.
So the command is; |I,01	// Read digital input at P2_1, The response will be either 00 or 01
	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	Hex

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	01

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	

	Outputs
	
	
	
	
	
	
	
	00 or 01
	

Write to Pin 19; |O,02,xx
	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	Hex

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	02

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	

	Outputs
	
	
	
	
	
	
	00 or 02
	
	

|0,02,02		Set o/p on P2_4 to 1
|0,02,00		Set o/p on P2_4 to 0

Write to Pin 5; |O,01,xx
Set O/P for pin 5, P2_2
	Pin
	27
	26
	25
	24
	23
	22
	21
	20
	Hex

	P2_2
	0
	0
	0
	0
	0
	0
	0
	1
	01

	P2_4
	0
	0
	0
	0
	0
	0
	1
	0
	

	P3_5
	0
	0
	0
	0
	0
	1
	0
	0
	

	P1_2
	0
	0
	0
	0
	1
	0
	0
	0
	

	P1_3
	0
	0
	0
	0
	1
	0
	1
	0
	

	Outputs
	
	
	
	
	
	
	
	00 or 01
	

|0,01,01 Set o/p on P2_2 to 1
|0,01,00 Set o/p on P2_2 to 0

Initial testing of Pin 19 , P2_4
Remember that after a pin is read, unless it is electronically tied to a voltage level, it returns to its default level. The RN4870 like many I.C’s uses a default voltage level of logic 1. So once the pin has been read, it reverts back to logic 1. I wanted to make sure that I could address pin 19, and that my digital voltmeter would read the voltages I expected.

Table detailing how I tested readings on pin 19
	Item
	Action
	Comments

	
	Check logic value on Pin 19 on RN4870, number 326 by using |I,02
	Output is 02, i.e. logic 1. This is the default level.

	
	Change logic level on 326, by using IO,02,00
	Check value using voltmeter. It has changed to a logic 0

	
	Read logic value on Pin 19 on RN4870, number 326 by using |I,02
	Output is 00
Note. As soon as the pin is read, the digital voltmeter shows that the pin has returned to its default level of 1.

	
	Read logic value on Pin 19 on RN4870, number 326 by using |I,02
	Output is 02, i.e. logic 1
Because the pin has been read, it changes back to its default level of logic 1, or 02
Here’s what has happened in the above. The RN4870 has default states. It will set a condition on a pin, at the state you command. Once you read that state, the RN4870 changes the logic level back to its default state.

[bookmark: _Toc490295072]Square Wave Generator
These RN4870’s are new I.C’s to me, so I want to step through my programming slowly, and see what is happening. I could step through the program manually, one machine cycle at a time. I do that sometimes. In this case, I also built a small clock circuit that I can change from 3 seconds a pulse to 30K pulses per second.
I built a small square wave generator. It outputs a logic 1, then 0, approximately every three seconds. That allows me to input a Logic 1, or 0, at a GPIO pin, and see if what I have done works. Remember, that you may set a GPIO port at logic 1, then read it, and you think that what you just did worked. But, (oops) the default reading of a GPIO pin is logic 1. So, have you actually just read in the default voltage level? i.e. what you just think you did, never in fact changed the port to a logic 1. It was already at logic 1, as that’s its default level?
So, to avoid this, I connect a voltmeter, or oscilloscope to the pin I am testing. I then use a square wave input, at such a slow frequency, so I can make my changes, then check that the pin changes as expected.
Circuit Diagram for Square Waver Generator

[bookmark: _Hlk489626103]

[bookmark: _Toc490295073]Building your own RN4870 Boards
If you decide to build your own PCB, or Veroboard, here’s a circuit diagram you could use. For clarity, I left out the GPIO pins. But you would bring them all out to an external edge connector.

You will note the coloured UART connectors. Those are for a UART/USB cable from http://www.ftdichip.com
You will also need a terminal emulator. I used Tera Term. It’s open source, well known, and I have found it robust, and easy to use.
Notes
· The reason for the resistors on the left (220K, 100K, and 10K) was that I needed a voltage divider as my power source is 5V. I needed to reduce it to 3.3V.
· The 47µF is a reservoir capacitor, and the smaller 0.047 µF is to remove any spikes from the power input.
· I included a manual reset switch, because in some operating modes the RN4870 UART command access is disabled? E.g. in low power mode the RN4870 switches off the high speed 26MHz clock, and runs on the low power, slower 32Khz clock. When that happens the UART command mode is disabled. So, you cannot access the RN4870 via a computer, or tablet etc. You then need a way to manually reset that. You could also do that with any type of signal, that was converted to a logic 0.
· The above low power option is how you could run an RN4870, for very long periods on a coin type battery cell. Then, if something triggered an event, you could use many different types of local logic I.C’s, or circuit, to wake up the RN4870, and have it autonomously run several scripts to take action. Obviously at that point the UART connectivity is enabled. You could then stream data/video, or remotely access it.
Who/Where to get your PCB made?
There are too many options to mention. Some include quality, and electronic verification of a design. Others include components at no charge (e.g. resistors, capacitors). There are some firms who cater for the small-scale manufacture. One of the important things to find out about is the “Gerber” files. If the PCB is manufactured online, or someone else owns the software, make sure you have access to the Gerber files. Those are the industry standard files used to hold the information about your PCB.

Things that affect price are; quantity, lead time, and the number of layers on the board.
I’ll include a PCB package that I have used. It is an application called PCB123. They provide the software free, and as you build/design the board their application documents the Build of Materials (BOM) and pricing. See below;
[image:]

[bookmark: _Toc490295074]Project - Streaming Data
The purpose of this project is to demonstrate the transparent UART data function of the RN4870. Although RN4870 is set up as a client, and RN4870 326 as a server, my video will show that data can be transmitted, in either direction, in real time.
Video https://vimeo.com/229124625

Schematic

This demonstration used a USB/UART cable to my laptop. You could connect the serial UART data connection and integrate that with your application.
[bookmark: _Hlk489805650]Programming
I did the following, and I have included comments about what I did, and why.

Device Supported Features
I have two RN4870’s. One is number 324, and the other is number 326. I have them set up, so that on connection, the data stream feature is open, and the link secured.

See table on next page.

Bitmap Table of Features to be Supported
	
	23
	22
	21
	20
	23
	22
	21
	20
	23
	22
	21
	20
	23
	22
	21
	20

	Enable Flow Control
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No prompt
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Fast Mode
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No beacon scan
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No connect scan
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No duplicate scan result filter
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Passive scan
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	UART Transparent, no ack
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0

	Reboot after disconnect
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0

	Run script at power on
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0

	Streaming
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0

	Configuration
	0
	1
	6
	0

I decided on these features for the following reasons;
· UART Transparent, no acknowledgement. I just want the receiving RN4870 to receive data without any handshaking.
· Run Script at power On. I always set that up. In this case, I am running a script at “connection” which automates security and bonding, and client status, from 324 to 326. I explain that script further down.
· Streaming. I need the streaming feature enabled for this project.
The command to enable those three features is; SR,0160
Note. For a separate project, I implemented hardware flow control, but for this project, for showing a concept that is not needed. However, if you need hardware control, do the following;
· In your terminal emulator, enable flow control
· The command for the bitmap of features, would change from SR,0160, to SR,8160.
· If you are using the PICTail development board, you then need to insert two jumpers, on pin connector J3. See the PICTail manual page 16, para 2.2.1 sub para 15, which explains that the RTS and CTS connectors need to be closed using “jumper connectors”.
Configuring the RN4870’s
I then need to configure the GAP Services that the RN4870 will support. I decided to configure them both for; Enable GATT services, Device Information Service and Transparent UART.

Table of Commands to program the RN4870’s
	Item
	Description
	324
	326

	
	To change the default name
	S-,MSM324
	S-,MSM326

	
	Enable GATT services, Device Information Service and Transparent UART
	SS,C0
	SS,C0

	
	Runs script(s) after power on and starts streaming service, and UART without acknowledgement
	SR,0160
	SR,0160

	
	Configure 2_2 as GPIO, for future use
	SW,03,00
	SW,03,00

	
	Configure 2_4 as GPIO, for future use
	SW,04,00
	SW,04,00

Script in 324
The RN4870 includes a small CPU, with limited scripting capability. Having said it’s small, it’s still about 20 times faster than the CPU’s, I started using, many years ago. It does give me some limited, local, autonomous compute. I can also use local logic circuits to significantly enhance what it can do. I used the following script to automate a secure connection, and enable transparent UART service.

Table of Script for RN4870, 324
	Item
	Command
	Comments

	
	@CONN
	Start this script when RN4870, 324, connects with another RN4870.

	
	SM,1,0002
	Set up timer 1, so it runs for 2 time periods. Each time period is 0.624 seconds. This timer will run for approximately 1.2 seconds.

	
	@TMR1
	At the end of the 1.2 seconds execute instruction CI.
Notes.
1.I found that I needed to wait a short time, before the two RN4870’s had completed handshaking before I invoked instruction CI.
2. The handshaking that is taking place includes the RN4870’s verifying the bonding details for each other, and then they securely bond the connection. That’s what requires a slight time delay.

	
	CI
	The “C” part of this instruction sets RN4870, 324 as the client. The “I” part enables transparent UART service.

[bookmark: _Toc490295075]Multiplexed Bi-Directional Mixed Data Streaming
The Expectation
This has a happy ending, but read on (please). Remember I was working on this technology 30 years ago. I expected that it would have moved on in that time. For this project, I invested quite a lot of effort, which included working with Microchip’s technical staff. I thought I could construct a command sequence that would enable real-time, bi-directional transmission/receipt of mixed data types, through the Bluetooth connection. After two interactive support sessions, Microchip advised me, that this is not a standard feature.

The Solution
I have done it. Here is a short description of my solution;
· Bi-directional
· Real-time
· The limitations are;
· I use polling or interrupts to control the direction of data flow.
· Buffering would be needed to prevent data loss.
· Bandwidth limitations, of Bluetooth.

I can multiplex, different types of inputs/outputs, at either end. You could have a real-time mixture of video, audio, data etc, and the correct output/input would be automatically routed to the appropriate device, or application. Bandwidth and switching latency would restrict the quality of any such capability.

Please contact me if you want a demonstration of this; mike.mckean@msm-systems.com 07539 341 216
[bookmark: _Toc490295076]Custom Services & Characteristics
In the next project (on page 27), I will need to use a Custom Service, along with associated Custom Characteristics. If you know what those are, then skip this section, and go straight to page 29. If you are a little unsure, the video below, and this section may help.
Video https://vimeo.com/229142382
Before, I explain what a custom service, and its associated characteristics are, let’s understand what a “normal” service/characteristic is?
If you go and buy a Bluetooth heart rate monitoring device, it will adhere to an agreed set of specifications. They are published at; https://www.bluetooth.com/specifications/gatt That means that anyone who develops anything in that area, must adhere to the published specification.
As a manufacturer, I would know how to build, and program my sensors. I would integrate that to an application. This makes support, and development simpler.
Here’s what that really means in some detail. I will explain this using a custom (or private) service, along with its associated characteristics.
Let’s consider a non-standard solution. Let’s say you want to design your own Bluetooth application, for your own use, or company use. Then you can write your own deliverables. You decide that you want to design a sensor which would monitor the temperature of a beehive, and then send you an alert if it fluctuated outside certain parameters.
You would write a custom specification. It will contain parameters. In Bluetooth terminology, those parameters are called characteristics. If the maximum allowed temperature was 400 C and the minimum was 00 C, then they could be two characteristics. You might also decide to send your alert using a digital logic level of 0 (remembering about default levels being a 1). That alert will be sent on GPIO pin 4. So, you now have four characteristics;
· Minimum temperature 00 C.
· Maximum temperature 400 C.
· Alert is a logic 0.
· Alert raised on GPIO pin 4. Note. That would limit the types of sensors you could use. But let’s include it.
But you cannot name this “Billy’s Beehive Specification for Bluetooth”. You need a name that is unique.
Here’s a summary of what you do;
· You visit this site; http://www.guidgenerator.com/online-guid-generator.aspx
· You create five 128 bit GUID’s.
· One is to be the custom service.
· The other four will be the custom characteristics.
· For example here’s what you would have;
· Billy’s beehive service, is now known as; 6AE5D097F9F942B7BE3B54DFC5DD5099
· Minimum temp characteristic as; 3A6DD8D1BBF747D49D1747B23B777C0A
· Maximum temp characteristic as; A8AF896A926D487598D578FB1FF8B435
· Alert pin 4 as; F7834CD5312F45F9854A57D837137068
· Alert logic = 0, is; 6AE5D097F9F942B7BE3B54DFC5DD5099
· As you can see those are long identifiers. However, once you create them in your programming, then the RN4870 will automatically shorten them to 16 bit ID’s. These are known as “handles”. So that could be;
· Billy’s beehive service, is now known as; 1234
· Minimum temp characteristic as; 22A4
· Maximum temp characteristic as; AF33
· Alert pin 4 as; 4A34
· Alert = 0V; as 3E12
· Remember those are your internal handles.
· In terms of public access, anyone thinking of trying to connect to your custom service, would “see” a 128 bit GUID of “6AE5D097F9F942B7BE3B54DFC5DD5099” that they did not recognize, nor would they know what it did. A hacker may still want to connect. That’s a separate issue.

[bookmark: _Toc490295077]Project - Remote Monitoring
If you are unsure of Custom Services and their associated Characteristics please go back to page 25.
Video https://vimeo.com/229129675
I set up two RN4870’s. The remote one (326) is acting as a remote site device. It can receive and output signals, and data. You can have human agents located with access to the central unit (324). I show how alerts can be received, identified, and you can take manual measures, such as switching on lights or cameras. Or you could integrate those identifiable data messages, with a back-end application. Or do both?
Schematic

Screenshot of Demonstration
Video https://vimeo.com/229129675
[image:]

Device Configuration
I have two RN4870’s. One is number 324, and the other is number 326. I have them set up, so that on connection, the data stream feature is open, and the link secured. Please see below;

Table 1, Features to be Supported
	
	23
	22
	21
	20
	23
	22
	21
	20
	23
	22
	21
	20
	23
	22
	21
	20

	Enable Flow Control
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No prompt
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Fast Mode
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No beacon scan
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No connect scan
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	No duplicate scan result filter
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Passive scan
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	UART Transparent, no ack
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0

	Reboot after disconnect
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0

	Run script at power on
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0

	Streaming
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0

	Configuration
	0
	1
	6
	0

Table 2, I have configured the two RN4870’s as follows
	Item
	Description
	324
	326

	
	To change the default name
	S-,MSM324
	S-,MSM326

	
	Enable GATT services, Device Information Service and Transparent UART
	SS,C0
	SS,C0

	
	Runs script(s) after power on and starts streaming service, and UART without acknowledgement
	SR,0160
	SR,0160

	
	Configure 2_2
	SW,03,00 (GPIO)
	SW,03,00 (GPIO)

	
	Configure 2_4
	SW,03,00 (GPIO)
	SW,04,09 (Pin Trigger 1)
In this case when a threshold is met, the connection to Pin 2_4, will go low. That will trigger the scripting event labelled as “@PIO1L”. Please see the scripting section.

Selection of Characteristics
Table 3, Notify on read part of characteristic is
	Feature
	Comments
	27
	26
	25
	24
	23
	22
	21
	20
	

	Indicate
	ack svr to client
	0
	0
	1
	0
	0
	0
	0
	0
	

	Notify
	No ack
	0
	0
	0
	1
	0
	0
	0
	0
	

	Write
	
	0
	0
	0
	0
	1
	0
	0
	0
	

	Write no response
	
	0
	0
	0
	0
	0
	1
	0
	0
	

	Read
	
	0
	0
	0
	0
	0
	0
	1
	0
	

	Notify on read
	
	0
	0
	0
	1
	0
	0
	1
	0
	12

Table 4, Notify on write part of characteristic is
	Feature
	Comments
	27
	26
	25
	24
	23
	22
	21
	20
	

	Indicate
	ack svr to client
	0
	0
	1
	0
	0
	0
	0
	0
	

	Notify
	No ack
	0
	0
	0
	0
	0
	0
	0
	0
	

	Write
	
	0
	0
	0
	0
	1
	0
	0
	0
	

	Write no response
	
	0
	0
	0
	0
	0
	1
	0
	0
	

	Read
	
	0
	0
	0
	0
	0
	0
	1
	0
	

	Notify on write
	
	0
	0
	0
	0
	1
	0
	0
	0
	14

[bookmark: _Toc489768450]Creating the Custom Service & Characteristics
PS,<hex16/hex128>
Command PS sets the UUID of the public or the private service. This command must be called before command PC. The effect of command PS can be verified after a valid PC command is added and after power cycle. Command PS expects one parameter that is either a 16-bit UUID for public service or a 128-bit UUID for private service.

Example:	PS,010203040506070809000A0B0C0D0E0F	
// Define a private service with
//UUID 0x010203040506070809000A0B0C0D0E0F
	The above is 8 x 16 bits = 128 bits, e.g. 0 to F in each bit.
Notes
1. To create a private service, generate a 128 bit private UUID using; http://www.guidgenerator.com/online-guid-generator.aspx
2. A private service must be created before any characteristics are created.
3. I created this private service from above URL; PS,E659E65283464107AC8EE1433E6EFEC1
4. You also use the same url to generate individual 128 bit ID’s for each characteristic.
[bookmark: _Toc489768449]Table 5, the Custom Characteristic and Services on RN4870, 326
	Item
	Command
	Comments

	
	PZ
	Clear any existing services

	
	PS,E659E65283464107AC8EE1433E6EFEC1
	Custom Service

	
	PC,D0E75C9270704692A0C1C260963753C5,14,04
	Write Characteristic, (no ack) with notify

	
	PC,6886C6CD15864E8683880EBE13FBD25B,12,02
	Read Characteristic, with notify

	
	R,1
	Reboot, to save configuration

Screenshot 2. List of Services, on 324
Note. You will not “see” any characteristics, until you connect to another sensor.

[image:]

Handles
	Item
	Command
	Comments

	
	0072 Write handle
0073 Notify on Write enable/disable
0075 Read Handle
0076 Notify on Read enable/disable
	

Note. You need to create the custom services, and characteristics before you write the scripts. That is because you need to know what the handles are to be used in the scripts. You will not know what the handles are, until you create the custom services, and characteristics.

Script in 324 (client)
Remember; To enable notification or indication to changes on handle 0072, you enable “the enable handle”, for 0072, which is 0073. Similarly, for 0075, you enable 0076.
	Item
	Command
	Comments

	
	@CONN
	

	
	SM,1,0002
	

	
	@TMR1
	

	
	CI
	

	
	SM,2,0100
	

	
	@TMR2
	

	
	CHW,0073,0100
	Enable notification on write characteristic 0072

	
	CHW,0076,0100
	Enable notification on read characteristic 0075

Script in 326 (server)
	Item
	Command
	Comments

	
	@PW_ON
	

	
	|O,01,%0072
	Any commands using CHW,0072,xx, e.g. CHW,0072,00 or CHW,0072,01, will output on 2_2, on 326, a logic 0, or 1.

	
	@PIO1L
	Do following (next) action, when Pin Trigger 1, goes low. Note Pin 2_4, is connected to the alert switch, which goes low, when closed.

	
	SHW,0075,ABCD
	This sends a message to 324. The message characters are limited to 4 Hex characters, and can only contain 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E That character string could simply notify a human agent that something had occurred, and he could refer to a list of incidents. Or it could be integrated with an application, and other automated tasks could be invoked. This still offers 65,536 individual notifications, per node. I could increase this to billions, if needed.

[bookmark: _Toc490295078]Useful Technical Information
The following is a collection of information that I thought you may find useful.
Embedded Scripting Events Table
	Input Parameter
	Event
Label
	
	Event
	

	00
	@PW_ON
	
	Power On
	

	01
	@TMR1
	
	Timer 1 Expired
	

	02
	@TMR2
	
	Timer 2 Expired
	

	03
	@TMR3
	
	Timer 3 Expired
	

	04
	@CONN
	
	Connected
	

	05
	@DISCON
	
	Disconnected
	

	06
	@PIO1H
	
	Trigger Pin 1 Rising Edge
	

	07
	@PIO1L
	
	Trigger Pin 1 Falling Edge
	

	08
	@PIO2H
	
	Trigger Pin 2 Rising Edge
	

	09
	@PIO2L
	
	Trigger Pin 2 Falling Edge
	

	0A
	@PIO3H
	
	Trigger Pin 3 Rising Edge
	

	0B
	@PIO3L
	
	Trigger Pin 3 Falling Edge
	

Timer Commands Explained
Examples:	
SM,1,000E	// Start the timer 1 to expire in about 9 seconds, e.g. each unit is 640 ms, and in Hex
//E = 15, so delay = 15 x 640ms = approx. 9 seconds
SM,1,0000	// Stop timer 1 immediately

Let’s look at these timers in detail. Please refer to table below, if needed. The first parameter is the timer identifier, specifying one of the three available timers. The second parameter is expiration time. If the second parameter is zero, then the timer specified in the first parameter is cancelled. Unit value for timer 1 is 640 ms, while for timers 2 and 3 are 10 ms. This is the only Set command that does not save parameter in NVM and becomes effective immediately

SM,3,0100	// start timer 3 to expire in about 2.5 seconds , e.g. each unit is 10ms, so delay is
//256 x 10ms = 2.5 seconds.

Table for Timers example above, using 0000 0001 0000 0000
	215
	214
	213
	212
	211
	210
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20

	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0

PWM Command Explained
[,<1-2>,<0-3>,<hex16>,<hex16>
Command [supports Pulse-With Modulation (PWM) function on RN4870. It expects up to four parameters.
Note. The command “[“ includes a comma e.g. “[,” not just “[“ else the RN4870 will be waiting for content, and a closing square bracket] and trying to treat any text as data for a parameter.
The first parameter is the PWM channel to be used in this command. Two PWM channels are supported. Channel 1 is on pin P22 and channel 2 is on pin P23. If pin P22 has been assigned to a system function, such command is ignored and RN4870 returns error message.
The second parameter is used to enable/disable PWM and clock source selection. Refer to Table 2-12 for details.
PWM Operation Selection
	Value
	Description
	Time Unit

	0
	Disable PWM. Third and fourth parameters ignored
	—

	1
	Enable PWM with 32 kHz clock
	31.25 µs

	2
	Enable PWM with 1024 kHz clock
	977 ns

	3
	Enable PWM with 16 MHz clock
	62.5 ns

The third and fourth parameters are 16-bit hex values, defining maximum and compare values, respectively.
RN4870 follows standard PWM operations. The clock source decides the unit time used in maximum and compare values. Maximum value multiplying time unit is the PWM period; compare value multiplying time unit is the PWM width which is output high within the period. The basic concept of PWM operations is shown in Figure 2-1.
Note. You need to refer to the diagram below, to understand the above, and read this at the same time. When the level being read is greater than the compare reference level, then a logic 0 is output. When the level is less than the reference (or compared) level then a Logic 1 is output. PWM output voltage levels change based on how frequently they are sampled. So, if a level being compared to the reference level was always greater than it, then the output would always be a 0. If the level you are comparing is larger 80% of the time, then the output is a series of short duration Logic 1 pulses. In contrast, if the level you are comparing is smaller 80% of the time, then the output would be a series of much longer duration pulses.
Basic Concept of PWM Operation
[image:]
Example:
[,1,3,00A0,0050 	// Use PWM on P22, use 16 MHz clock. max is 10 ms, compare is 5 ms
So above example is;
[,	This is a PWM command
1,	Use Channel 1, which is configured by default on pin 22
3, 	Use 16MHz clock. Each time unit is 62.5ns
00A0	This is the maximum value time in ms
0050	This is the time when the value is compared, in ms

Beacons, and Advertisements
A Bluetooth device transmits a message at pre-set intervals. This can be switched off. The message is made up of information, that is contained in an advertisement. Advertisement this is the message that is transmitted. The message can be used by applications within Bluetooth devices. E.g. if you had an application that helped you to find your way around a store, then this device could be advertising its location, using a message termed an advertisement. That message will include details about its location. Your application then knows it is close to that beacon.

Table of ASCII Programming Commands
	ASCII Cmd
	Description

	S-
	Set serialized device name

	S$
	Set configuration detect character

	S%
	Set pre and post delimiter of status string

	S:
	Modify any configurations in Eflash

	SA
	Set Pairing mode

	SB
	Set UART baud rate

	SC
	Set beacon features

	SDA
	Set appearance in GAP service

	SDF
	Set firmware version in Device Info service

	SDH
	Set hardware revision in Device Info service

	SDM
	Set model string in Device Info service

	SDN
	Set manufacturer name in Device Info service

	SDR
	Set software revision in Device Info service

	SDS
	Set serial number in Device Info service

	SF,1
	Factory Reset

	SGA
	Set RF power in advertisement

	SGC
	Set RF power in connected state

	SM
	Start timer

	SN
	Set device name

	SO
	Set power saving mode

	SP
	Set fix pin for pin code display authentication

	SR
	Set feature

	SS
	Enable default services

	ST
	Set connection parameters for central

	SW
	Assign GPIO functions

	
	Get Commands

	G:
	Read any settings in configuration eFlash

	GK
	Get current connection status

	GNR
	Get remote device name

	G<char>
	Get the stored settings for a corresponding set command.

	
	Action Commands

	+
	Echo

	$$$
	Get into Command mode

	Get into Data mode

	!
	Enter/exit Remote Command mode

	@
	Read analog port

	|I
	Read digital port

	|O
	Set digital port

	[
	PWM control

	&
	Static private address assignment

	&C
	Clear random address and use MAC address

	&R
	Create and use a resolvable random address

	A
	Start advertisement

	B
	Start bonding process

	C
	Connect to peer device as central

	D
	Display RN4870 critical information

	F
	Start scanning as central

	I
	Start UART Transparent with RN4020 and RN4677/4678

	IA
	Set advertisement content immediately

	IB
	Set beacon content immediately

	IS
	Set scan response content immediately

	JA
	Add device into white list

	JB
	Add all bonded device into white list

	JC
	Clear white list

	JD
	Display all devices in white list

	K,1
	Disconnect

	M
	Read RSSI value of connected device

	NA
	Set advertisement content permanently

	NB
	Set beacon content permanently

	NS
	Set scan response content permanently

	O
	Shut down device

	R,1
	Reset

	T
	Change connection parameters instantly

	U
	Unbond device(s)

	V
	Display firmware version

	X
	Stop scan

	Y
	Stop advertisement

	Z
	Stop connection process

	
	List Commands

	LB
	List all bonded device

	LC
	List all remote services as client

	LS
	List all local services as server

	LW
	List current script

	
	Service Definition

	PC
	Define characteristic

	PS
	Define service UUID

	PZ
	Clear all service definition

	
	Characteristic Access

	CHR
	Read remote characteristic value as client

	CHW
	Write remote characteristic value as client

	CI
	Discover remote services/characteristics as client

	SHR
	Read local characteristic value as server

	SHW
	Write local characteristic value as server

	
	Script Control

	WC
	Clear current script

	WP
	Pause script execution

	WR
	Run script

	WW
	Write script

[bookmark: _Toc490295079]My Background in IoT
	I began working on this type of technology in the mid 1980’s. I then changed career, and returned to it recently. At the end of this paper you can review a list with url links, to some of my other recent technical publications, which include a range of associated compute technologies.
	[image:]

When I thought about writing this paper, I thought things would have moved on a lot, and I might struggle to catch up. Surprisingly, I caught up fast. I soon realized that I was not so rusty after all.
I began my career in the Royal Corps of Signals. My official technical trade was; “Radio Relay Technician”. I repaired large radio systems in the frequency range from 225 MHz through to 960Mhz. I worked down at component level.
If you are ex Royal Signals you will understand this next part. I passed the Foreman of Signals exams, the week-long assessment, and was allocated an 18 month course at Blandford. Instead, I decided not to take the course, as it would effectively commit me to the Army for the rest of my working life.
The Army, then gave me a role in my last few years which allowed me to build “network of things” devices. I was also given time off to study at various colleges. I earned; OND, HNC, and much later a BSc. I was also sent on computer courses with firms such as Motorola. I built things, using TTL, CMOS I.C’s, and controlled them with 8 Bit Motorola 68XX series CPU’s. I programmed them using Boolean Logic, Assembler, or a combination of the two. These things were connected securely, using radio, or wires.
For components, and CPU’s, I used Farnell, and RS components catalogues. I did my prototyping on Veroboard, and DIL packaged I.C’s. I then made the PCB’s using Indian Ink Drawings, UV Light Box, and Acid Tank for etching the boards, and a small model/hobby drill for drilling out the PCB holes.
[bookmark: _GoBack]After the military, I worked in technical, and later sales roles for several telecommunications and computer companies. I spent way too much time in sales type roles.
[bookmark: _Toc490295080]What am I bad at?
I don’t like high level languages. Having said that I earned an A Grade in my BSc, which focused on C++. If you want me to do that, I’d need time to get up to speed on that.
[bookmark: _Toc490295081]My IoT Company
In March 2016, I started my own company. I used my computing sales experience, to set it up also as a traditional computer reseller.
To begin with, I sold the normal things I was accustomed to. I won a 1,000 node Grid Computing Solution for a global bank, and a remote access middleware solution for the NHS. But, that’s not where my heart is. My interest is in the internet of things.
Obviously, I cannot do everything. I see myself as a sales engineer, who partners to deliver a complete solution.
For computing pre-sales, and installation I partner with Avnet. You cannot buy from them. They are a $26 Bn IT Distributor who have 30,000 staff globally, including vendor accredited staff on infrastructure, such as; HPE, IBM, SAP, CISCO, NetApp etc. If you work with me, I will introduce you to the engineers at Avnet, and you will work with them, as you would do with a traditional computer reseller. The difference being, that Avnet has 30,000 staff, and presence in every developed country in the world.
For IoT, industrial requirements, or Logic I.C’s and CPU’s etc, I still use Farnell, and RS components. The main change is that instead of using a paper based catalogue, I use their web based shops.
For any computer related security requirements, I will still use AVNET. If they cannot deliver what is needed, I use a specialist security distributor, called e92plus. I do feel my secure military communications background helps me in this area, but I need AVNET or e92plus to assist in terms of staff to deliver vendor accredited design and installation.
If you are an IT or Project Manager, you may be asked by your Business to deliver an Internet of Things project. My company is set up as an accredited reseller for every technology you will need. This means that if you engage with me, we can work together, to design a project delivery plan, with nothing missing, i.e. from sensor, to network, to servers, storage, through to databases, and security.
[bookmark: _Toc490295082]Other Publications
· A very technical paper on NAND Flash technology.
See https://www.linkedin.com/pulse/nand-flash-technical-paper-mike-mckean
· There are several others on my Linkedin, but this IoT and the above NAND Flash paper are the most detailed.
My Linkedin https://uk.linkedin.com/in/mike-mckean-991a7743

Internet of Things, Videos supporting this paper;
· Custom Services & Characteristics	https://vimeo.com/229142382
· Controlling a Remote Site 		https://vimeo.com/229129675
· Bi-Directional Streaming Data	https://vimeo.com/229124625
· Real Time Development Tool	https://vimeo.com/225991207

Other Videos for IoT Turnkey Projects;
· Infrastructure, Servers etc		https://www.msm-systems.com/infrastructure/
· Legacy Server, IoT Upgrades	https://www.msm-systems.com/upgrade-existing/

Other Publications. These are much shorter;
· Brief Technical Description of what an API is;
https://www.linkedin.com/post/edit/brief-technical-description-what-api-mike-mckean
· Ransomware through the Counterfeit Firmware, back-door;
https://www.linkedin.com/pulse/ransomware-topical-what-boring-old-firmware-mike-mckean
· Firmware;
https://www.linkedin.com/pulse/firmware-technical-description-mike-mckean
· Snapshots (Storage);
https://www.linkedin.com/pulse/short-explanation-snapshots-mike-mckean
· Cost cutting in IT. Don’t do it;
https://www.linkedin.com/pulse/dont-cut-costs-mike-mckean

Happy for you to share this, but cc me in, so I know who may have interest? mike.mckean@msm-systems.com 36 | Page

image3.jpeg
2A24,0014,02

2A25.0016,02

2A27.0018 02

2026001, 02 Custom Service

2A28,001C,02 Custom Characteristcs
2023, 001E , 02

2020 0020 , 02 0072:8,0015

49535343F E 704 AES8FAIIFAFD20

B,0075,
6886CGCDI5866E8683880EBE13FBD253 0076,10

image4.jpeg
Z AN 2 (7 [# [[z (2 [[

Enable Flow [1 |0 [0 |0 |0 |0 |0 |0 [0 |0 |0 [0 0 0 [0 |0
Control
Noprompt |0 |1 [0 [0 [0 [0 [0 [0 [0 [0 [0 [0 0 0 [0 |0
FastMode [0 |0 [1 [0 [0 [0 [0 [0 [0 [0 [0 [0 0 0 [0 |0
No beacon [0 |0 |0 |2 |0 [0 |0 |0 [0 [0 |0 [0 0 |0 [0 |0
scan
No connect [0 [0 [0 |0 |1 [0 |0 |0 [0 |0 |0 [0 [0 [0 [0 |0
No duplicate [0 |0 |0 [0 |0 |1 0 |0 |0 [0 [0 [0 [0 0 [0 |0
scan result
filter
Passivescan |0 |0 [0 [0 [0 [0 (1 [0 [0 [0 [0 [0 0 0 [0 |0
UART 0 [0 |0 [0 [0 |0 |0 0 [0 0 [0 0 0 0|0
Transparent,
noack |
Reboot after [0 [0 |0 [0 |0 |0 |0 |0 [1 |0 |0 [0 [0 [0 [0 |0

onnect
Run scriptat [0 [0 [0 [0 [0 |0 |0 |0 |0 0 [0 o 0 [0 0
power on
Streaming |0 |0 |0 |0 [0 |0 [0 |0 |0 0 0 0 [0 |o

image5.jpg
ad

image6.emf
RN4870 #324

In Central Mode

USB/UART Cable

Power & I/O

To Laptop

Laptop, Windows 10

Using Tera Term

Connector

CN2

1

5

12

16

Real Time Change

Monitoring Alarms

Status 1

Status 2

image7.emf
1 14

2 13

3 12

4 11

5 10

6 9

7 8

+Vcc

GND

Status 1

Status 2

1 14

2 13

3 12

4 11

5 10

6 9

7 8

+Vcc

GND

AND

INVERTER

GND

+Vcc

Green

Power On

Red

Standby

Green

Connection

Established

Green

Data session open

Transparent UART

image8.png
RN4870 MODULE

FP2
VEAT 0. 4 VBAT P2_0/MODE 15 HC‘D
_:VDD ! s VDD_10 JART_RX 22 HCI RXD
Z VDD_10 UART_TX 2 HQl TXD
RST N 21 po oicTs 13 P00 LED1
VBAT ; ; ; - 30 P02
20 P02 PO7 K
R29 — il T P10 i
P1_0 BLUE
A 2 - 2 P11 B
a E ol —r o
P1_3/SDA
32 P2 P22 JP8
JHE o m—
P24 27
P2_7TX_IND [—LL P2
P31 24 P31
- |25 P32
2 P3
27 P34
ULPc 0 8 { yieco 28 P35
— 10 { Bk o P3_6RTS (17 £

RN4870

L)Y

image9.emf
1 14

2 13

3 12

4 11

5 10

6 9

7 8

+3V

Gnd

Output

0V

+3V

33K

16.5K

1nf

220R

100R

Output

approx

0.3Hz

CD4541B

Timer I.C.

image10.emf
1 GND

2 GND

3 GND

4 VBAT

5 P2_2

7 VDD_IO

6 VDD_IO

8 ULPC_O

9 P2_3

10 BK_O

11 P2_7/TX_IND

12 P1_1

13 P1_2

14 P1_3

UART_RX 22

UART_TX 23

P3_1 24

P3_2 25

P3_3 26

P3_4 27

P3_5 28

P0_7 29

P0_2/LED 30

GND 31

GND 32

GND 33

RN4870

VCC +3.3V

15 16 17 18 19 20 21

Module Reset

Active-low

Internally pulled-high

GND

GND

300 W

0.047 uF

U

A

R

T

T

O

U

S

B

300W

Green

Is ON

47uF

+5V I/P

220 KW

100 KW

10 KW

GND

VCC +3.3V

Red

Reset

image11.png
&' PCB123 - [Test]

B9 File View PCB123 Window Help

IDPH YRR e*s0a s

B Test |
a ‘Component PCB Board Total Order
a | Row — - 2 > Notes.
0 Part v/ Description Manufacturer | Package | RefDes | Price | Quantity | Cost | Quantity | Cost Part Number
@| 1 [[FCIi0373D48 | Single-chip 16-bit/32-bit microcontrollrs; 8 kB/16 k soaiz2 UL, U2 $3.595 2 s 40 s143.78 568209310
| 2 pcs Printed Circuit Board Sunstone Circits - - 518028 1 1803 20 $360.56 -
G
2 | Total 3 sz 60 $504.34
2

image12.emf
RN4870 #324

In Central Mode

RN4870 #326

In Peripheral Mode

Laptop, Windows 10

Using Tera Term

USB cable USB cable

Data that is entered through the UART on 324, is instantly

and transparently received by 326. This could be used

for video, speech, or any type of data.

image13.emf
RN4870 #324

In Central Mode

RN4870 #326

In Peripheral Mode

USB/UART Cable

Power & I/O

To Laptop

Laptop, Windows 10

Using Tera Term

Alert 1

Input Switch

This could be heat,

intruder, change in

cable characteristics,

anything at all.

GND

2_4 2_2

+3V

This output could

control an audible

alarm, or a camera

anything?

image14.png
P -
\ ey ©lhoBEESERRAR [——— —ox
Fle Wome Dwon Inan Page Tavk Pewre Revew Support *

' m e s s R s 8O

image15.jpg
2A24,0014,02

2A25,0016,02

2A27,0018,02

2A26,001A, 02 Custom Service

2A28,001C, 02

2A23,001E, 02

2A2A, 0020, 02
4953534 3FETDARAESSFAIIFAFD209F 455

495353431E4D4BDIBA6123C64/4269616 , 00:

4953534388414 3F4ABDAECPES4 729BB3
4953534 34C8A39BI2F 495 V1CFFO73B 7, ’
495353434C8A39B32F49411CFFO73BJE , 458,10
E659E65283464107ACSEET433EGEFE
DOE75C9270704692A0C1C260963753CY/, 0072, 04
DOE75C9270704692A0C1C268963753f , 0073, 10
6886C6CD15864E8683880EBE13FBDZSB, 0075, 02
ENgSSGCGCDlSSGAE8683880EBE13FBDZSB,@076,10

Custom Characteristcs

0072 & 0075

image16.png
Outp

ut

0

MaxCoun

Compare—

0

ter

image1.jpeg

image2.jpeg

image17.jpg

