What's Quantum Technology?

Peter Knight NQTP Strategic Advisory Board Chair & Roger McKinlay NQTP Challenge Director

Quantum mechanics founders

- Planck, Einstein, Bohr, Heisenberg, Born, Dirac, Schroedinger
- but how can quantum mechanical principles of coherence and entanglement be employed?

""When two systems... enter into temporary physical interaction due to known forces between them, and separate again, then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought. By the interaction the two representatives [the quantum states] have become entangled." ." Schroedinger, Camb Phil Soc

20th century – the 1st quantum revolution

- Transformative outcomes across all of technology and society
- Industrial revolution, electricity etc. was built on classical physics
- Quantum physics, developed during the 1920s gave us much of our modern technology
- Examples:

Progress in quantum physics since 1990s is underpinning a 2nd quantum revolution with similar societal impact to 1st

The strange world of quantum- highly counter-intuitive! First and second quantum revolutions

Quantization	$ \begin{array}{c} E \\ n=4 \\ n=3 \\ n=2 \\ n=1 \\ 0 \\ L \\ \end{array} $	All quantities are discrete, for example, the energy levels in an atom	
Wave Nature of Matter		all objects (photons <u>and</u> particles) display both particle and wave properties	Lasers semiconductors
Superposition	Classical Quantum Bit Bit (qubit) 0 or 1 0/1	quantum matter can be in two different states at the same time: measurement causes a collapse to one state.	
Entanglement	Dbserved Affected "here" "over there"	"connection" between separated particles where a measurement of one immediately affects the state of the other	Quantum 2.0

UK has estimated ~5 year lead on time to technology insertion in key areas

UK NATIONAL QUANTUM PROGRAMME

A Brief Timeline

THE UK NATIONAL QUANTUM TECHNOLOGIES PROGRAMME (NQTP): PARTNERS AND GOVERNANCE

COORDINATING BODIES

Programme Board Provides coordination and strategic direction for the programme with representation from each of the partner agencies.. Chaired by Dame Lynn Gladden, Executive Chair, EPSRC.

Strategic Advisory Board

Provides independent advice to help steer the strategic direction of the programme and policy on quantum technologies, and is made up of eminent figures from across industry, academia and Government. Chaired by Sir Peter Knight.

Research, Industry and Private Investment

UK National Quantum Technologies Programme

© NQCC 2022

Applications - Imaging

Quantum Imaging

J Time Correlated Single Photon Counting uses single-photon source & accurate timing to scan objects and identify them at distances of 1km and greater.

 \leq

Several applications: target identification in free- space at kilometre distances; using remote multispectral depth information to extract structural and depth imaging eg highly scattering underwater environment

Very promising for ranging/imaging applications: single-photon avalanche diode detector arrays, cameras where each pixel is a single-photon detector with single-photon sensitivity and picosecond temporal resolution.

A variation: use correlated photon pairs for range-finding imaging, heralding the measurement with one photon and performing the range measurement with the other photon.

Ghost imaging: extreme covert imaging

Applications - Sensing

What's Under your feet: Gravity - The Challenges

Imaging with Gravity

- Numerous applications in the societal challenge areas:
- Security (hidden voids, dense objects)
- Environmental monitoring (magma, buried material)
- Prospecting: oil & gas
- Space: attitude control

In a sphilacolities, the subscripts of house hypothesis provided by the set of the sphilacolities of particle and a set of the set

5cm

MEMS demonstrator

Where am I? Quantum Navigation

Quantum Sensors and Timing: Opportunities in PNT

Map Matching for Positioning

Gravity gradient

Magnetic Fields

 → Providing absolute position without any communication (including under water)
 → Collision alert (?)

Inertial Sensors for Navigation

Acceleration and Rotation

- \rightarrow Low drift
- \rightarrow Low bias
- ightarrow Ingredients for INS

Clocks for Timing

→ Time references → Transportable time

UK Quantum Technology Hub Sensors and Timing

What's in your head: MEG

Quantum-Magnetoencephalography – Spin off from QT

Cerca:

Joint venture spin-off between Magnetic Shields and Nottingham University Founded in 2020

First systems delivered internationally £6M turnover in first year >£50M requests for quotations

Impact Opportunities:

Epilepsy: 60M people worldwide

Dementia: 1% GDP

Schizophrenia: 1% of population

Trauma: 100.000 / year in UK

Communications

Long distance Quantum Key Distribution with Trusted Nodes: secure communications

In quantum physics, the act of measurement disturbs what you are measuring, so an eavesdropper reveals themselves and in any case can only access partial information

But

Computing

Basic idea of Quantum Computing

- Computation with n Qubits.
- Main difference: build **coherent superposition** of states

- State space grows exponentially with number n of qubits: 2ⁿ
- Behaves like a massively parallel computer
- Solves problems in much fewer steps in carefully constructed algorithms: see <u>https://quantumalgorithmzoo.org</u>

QUBIT scale (adapted from John Martinis)add one bit *doubles* the size

Ś	Ś	Ś	Ś	Ś		Re	ally	' Bi	дĽ	Data	a	Ś	Ś	\$	Ś	Ś
Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	×	Ś	Ś	Ś	Ś	Ś	Ś	Ś
Ś	G	S	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	S	S	Ś
Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	S	Ś	Ś
Ś	Ś	S	S	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	S	Ś	Ś
Ś	Ś	Ś	Ś	Ś			(0	0>+ 1) ⁿ			Ś	Ś	Ś	Ś	Ś
Ś	Ś	S	Ś	Ś	r	า=50): su	per	com	pute	er	Ś	Ś	Ś	Ś	Ś
Ś	Ś	Ś	Ś	Ś	n=	:300): mo	ore s	state	es th	an	Ś	Ś	Ś	Ś	Ś
Ś	Ś	Ś	G	Ś		atc	oms	in u	nive	rse		Ś	Ś	Ś	Ś	Ś
Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś
Ś	203	3703	597	633	448	5086	5268	3445	688	409	3781	610	5146	839	366	59>
Ś	63	625	063	6140	449	354	3812	2997	633	367	0618	339	737	65	Ś	Ś
Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	Ś	S	Ś	Ś
\$	S	S	S	S	Ś	S	Ś	S	S	Ś	S	Ś	S	S	÷	S

Google's 53 qubit processor gives $2^{53} = 10^{16}$

(Only 144,115,188,075,855,872 states)

Quantum Computer Hardware Startups

Superconducting Intel, IBM, Google, Rigetti

Optical Xanadu, PsiQuantum

Semiconductor Silicon Quantum Computing

Quantum Computing and the Crypto apocalypse

- Quantum computing changes whole nature of information processing
- Changes complexity classes: what was thought "hard" (nonpolynomial) may become "easy" (polynomial). Destroys our confidence in the security of the internet!
- Quantum Computing is NOT just about faster...Quantum can do things assumed impossible in a normal time.
- Yet "Hardness" assumptions underpin internet and comms security: problem!
- Shor (1994): Factoring hard classically becomes "easy" with a quantum computer
- Will render all public key infrastructure vulnerable. No RSA, TLS....Affects us all!
- Quantum computer at scale will emerge in a decade (best estimate);
- Need to retool all crypt primitives within that time to be quantum resistant.

The Industry Story

Only a product away...

UK Research and Innovation

Example quantum technology applications for different sectors¹

- Computing
- Secure
 communication
- Sensing and timing - PNT
- Imaging

Net	work	Fintech	Satellite	Precision agricu (u/ground wat	Conventional rac safer air traffic c lture ter)	lars for control Network infrastructure Navigat without sa	Gravity, acceleration and rotation sensors ³ tellites
manag	gement Environment/en (CCS/oil/gas/mir	ergy ning)	(transport/hou	sing/utility repairs)	-		N agnotic
Brai imag	n ing 🔕	Mental health therapies	Improved batteries		Dementia management		sensors
	Defence & Security	Driverless		Combating climate change		Quantum	
Sec	ure local etworks	vehicles				radar	Imagers ⁴
	Machine learning (Defence & Security)	Improved logistics management		P		Secure glo	pal 💂
notes:				Drug & materia	als	network	
nates of first juantum tech re communic arance as pr ervative time	use in industry, eg. as pre-pr nologies for deployable cloc cations, especially, have the p oducts available to governme escales indicated, could be ad	oduction prototypes. ks, new sensing modal otential for early impa ent and other custome ccelerated by targeted	ities and ct and their rs, ahead of the investment	discovery			QKD (Quantum Key Distribution)
vork manage	ment is comms; satellite navi	gation = space clocks;	radars = multistatic	radars exploiting clocks		Stre	ong artificial
ronment/ene gation; civil e er, sewage e	rgy - time order is CCS -> oil ngineering is rail/road survey tc2025), network infrastruc	/gas/mining (using ME ring & brownsite devel ture is fibre cabling et	MS); navigation with opment (-2023) follo c (2030)	nout satellites is inertial owed by utility repairs		computers ir	ntelligence
radar using	atomic clocks is not the sam	e as quantum radar					
		A CONTRACTOR OF STREET					

Catalytic Funding

The numbers

<text><text>

Where the investment is going

Integrators and Primes (QLM)

Single photon generation and detection opens the door to imaging systems which cannot be achieved using conventional means, including

- Portable, robust multi-gas imagers for gas emissions in infrastructure
- Vision through obscurance for lidar systems and imaging
- Non-line of sight imaging of obstacles

liceprojec

UK Research and Innovation

ORCA Computing Ltd.

MANATEE Single photons are the workhorse of the future quantum technology industry, being a fundamental component to high fidelity quantum computing, quantum communications, quantum imaging and some types of quantum sensors. They are also a fundamental step in ORCA's plans to build a fully-scalable, optical fibre-based photonic quantum computing platform...

Customers!

Collaborations

High-BIAS²

• Lead: ColdQuanta

UK Research

and Innovation

- 2020-2023
- Advancing the development of a cold atombased Quantum Positioning System
- Enabling resilient navigation systems without the need for GNSS

Not just Start-Ups

Computing Comms Sensing & Timing Imaging Components

Technology chain: Component (Platform) Established large enterprise, designs, supplies and supports market-leading cryogenic and high flux superconducting Key projects magnetic research platforms. They are a NISQ-Era Platform globally leading supplier of dilution fridge platforms for quantum FABU QuPharma

Full Stack

Deployment of full stack Rigetti platform in the UK Accessible via the cloud End use applications and new engagements

Case Study: The RLG – Complexity Can Be Mastered

The Classic Engineering Goals

- Smaller
- Cheaper
- More robust
- More reliable
- Lower noise
- More efficient
- For computing Scalable!

Nuts and Bolts

- Materials
 - Silicon Compound Semiconductors – Glass
- Fabrication
 - Nano 2D Materials heterogenous – 3D structures
 - Silicon meets glass.

- Optical
 - Gratings, cavities, optical waveguides, lasers, lasers, lasers, lasers..

Variables: A Lifetime of Work

- The Physics:
 - Electron spin.
 - Photon polarization
 - Atoms, Ions, artificial atoms/ defect-centres
- Qubit Type:
 - Trapped Ion
 - Neutral atom
 - Silicon
 - Photonic

- Not just qubits.
 - Architecture
 - Error correction
 - Control/calibration
 - Gate control
 - Environment
 - Connectivity
 - Substrate

Conclusions on the Industry Story

- We've created an ecosystem in which companies are starting and growing.
- We're attracting global companies to the UK.
- We're seeing products and revenue.
- The £2.5B commitment from UK Government shows commitment for the long term.

- UK is in top 3 world-wide
- 20 year £3.5Bn investment
- applications
- Beware of Export Regulation consequences
- you have nothing to do but mention the quantum theory, and people will take your voice for the voice of science, and believe anything- Bernard Shaw, Geneva (1938)

conclusions