

Standard IEC 60947-3 (distinguishes three types of utilisation categories)

All requirements and test specifications are laid out in standard IEC 60947-1 (general stipulations) and in standard IEC 60947-3 (specific stipulations).

Definitions

■ a switch is a mechanical switching device:

- capable of making, carrying and breaking currents under normal circuit conditions which may include specified operating overload conditions
- capable of carrying currents under specified abnormal circuit conditions such as those of short-circuits for a specified time
■ a disconnector is a mechanical switching device:
- capable of opening a circuit exclusively under no-load conditions (no load downstream)
\square which, in the open position, complies with the requirements specified for the isolating function
\square capable of carrying currents under normal circuit conditions and carrying for a specified time currents under abnormal conditions such as those of short-circuits
■ a switch-disconnector is a switch which:
\square in the open position, satisfies the isolating requirements specified for a disconnector
■ a switch-disconnector (and fuse-switch disconnector) in which:
- one or more poles have a fuse in series in a composite unit (for a fuse-switch disconnector, the fuse-link forms the moving contact).

Standardised current values for fusegear

\square conventional thermal current Ith (A)

This is the maximum current that a switch can carry continuously without excessive temperature rise. This value is provided with an operating temperature indicated by the manufacturer.
E.g. Ith $=25 \mathrm{~A}$ at $40^{\circ} \mathrm{C}$.

Generally speaking, Ith = lu (rated uninterrupted current). Ith is in fact the rating for the switch.

- rated operational current le (A)

This is the current for which the switch is generally used. It depends on the application (resistive or inductive current).

Utilisation categories

The standard IEC 60947-3 distinguishes three types of utilisation category.

- AC21: resistive loads
- AC22: mixed (resistive and inductive) loads
- AC23: inductive loads

A specific category is defined in the Appendix:

- AC3: direct switching of individual motors.

For DC loads, the respective categories are DC21, DC22, etc.
The designation (e.g. ACxy) of utilisation categories is completed by the suffix A or B according to whether the intended applications require frequent or infrequent operations:

- the letter "A" indicates frequent operations, from 2000 to 10000 (mechanical and electrical), depending on the rating
- the letter " B " indicates infrequent operations, from 400 to 2000.

Utilisation categories		Characteristics	Applications
Frequent operation	Infrequent operation		
AC21A	AC21B	Switching of resistive loads including moderate overloads ($\cos \varphi=0.95$)	Power distribution Final distribution (except motor feeders)
AC22A	AC22B	Switching of mixed resistive and inductive loads, including moderate overloads ($\cos \varphi=0.65$)	Medium and high power industrial distribution with motor feeders
AC23A	AC23B	Switching of motor loads or other highly inductive loads $\begin{aligned} & \left(\cos \varphi=0.45 \text { for } I_{e}>100 \mathrm{~A}\right) \\ & \left(\cos \varphi=0.35 \text { for } I_{e} \leqslant 100 \mathrm{~A}\right) \end{aligned}$	Motor feeders Occasional motor control
AC3		Switching of motor loads or other highly inductive loads $\begin{aligned} & \left(\cos \varphi=0.45 \text { for } I_{e}>100 \mathrm{~A}\right) \\ & \left(\cos \varphi=0.35 \text { for } I_{e} \leqslant 100 \mathrm{~A}\right) \end{aligned}$	Main, indirect control of an individual motor

[^0]
Example:

A 125 A switch in the AC23 utilisation category must be capable of:

- making a 10 In current (1250 A) with a $\cos \varphi=0.35$

■ breaking a 8 In current (1000 A) with a $\cos \varphi=0.35$.

[^0]: (1) For this type of application, a contactor is used to control the motor.

