The question that Graham asked was quite specific:
”However, if the lamp is damaged, and the user is being protected against accidental contact with live parts, say after the rectifier, would the type AC RCD operate is perhaps another?”
in that he said “after the rectifier”, so assume there are some diodes charging a capacitor, which discharges to supply the DC current, and the input current is 25 mA at 230 volts, what is the DC output current and voltage?
The question that Graham asked was quite specific:
”However, if the lamp is damaged, and the user is being protected against accidental contact with live parts, say after the rectifier, would the type AC RCD operate is perhaps another?”
in that he said “after the rectifier”, so assume there are some diodes charging a capacitor, which discharges to supply the DC current, and the input current is 25 mA at 230 volts, what is the DC output current and voltage?
You tell me.
The input is 6.44 W, so the product of the output current and voltage must be no more than that.
If there is a DC fault, there is no reason to believe that a Type AC RCD would trip, but it might. Graham will correct me if I have misunderstood.
LED car headlamps glow with a supply of nominally 12 V, so that would give potentially 0.5 A @ 12 V. The figure that I have in my memory for the resistance of a human body finger-to-toe is 2 kΩ, so now we are looking at a current of 12/2000 = 6 mA.
We're about to take you to the IET registration website. Don't worry though, you'll be sent straight back to the community after completing the registration.
Continue to the IET registration site